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Abstract— This paper presents non-classical bandpass filter
designs for a reconfigurable photonic integrated circuit (PIC).
Because the designs must be realizable for a high frequency
range in a new optical device, we consider digital infinite-
impulse response filters that avoid lasing for a specific unit cell
configuration. In order to accommodate the architecture of the
PIC, we describe a design procedure for bandpass filters in the
10 GHz frequency range based on a prototype filter constructed
from second-order sections.

I. I NTRODUCTION

For future signal processing platforms, it will be necessary
to design filter structures that operate at frequencies near10
GHz and with bandwidths around50 MHz. Although opti-
cal infinite-impulse-response (IIR) and finite-impulse-response
(FIR) filter architectures have previously been proposed [1]–
[4], no photonic integrated circuits (PICs) have been physically
realized. However, with recent advances in PIC technology,
it is anticipated that filters in this frequency range can be
implemented using a cascade of unit cells. In order to model
such devices, we consider bandpass filter designs that fulfill
these requirements while maintaining normal operation with-
out lasing.

For a reconfigurable PIC, device elements that provide in-
dependent control of the magnitude and phase of the poles and
zeros of an IIR system are needed. To achieve this, the unit cell
is integrated with the following elements as shown in Figure 1:
multi-mode interference (MMI) coupler [5], semiconductor
optical amplifier (SOA) [6], and phase modulator (PM) [7].
The component operations can be described as functions of the
input signal wavelength, yielding optical-response characteris-
tics. To match the response of the physical device to that of a
digital filter design, we employ az-transform model to derive
the correct mapping of the PIC parameters. The mapping is
based on the bilinear transform, which connects the digital
and analog domains via the sampling frequencyfs, which in
turn is related to the free spectral range (FSR) of the optical
system [8], [9]. For the particular unit cell considered here,
we assume thatfs = 25 GHz.

A PIC operating in the frequency range of10 GHz is
vulnerable to lasing, which is the condition where the device
operates as a laser rather than yielding an optical signal that
can be processed [10]. Methods of mapping between the
optical and signal processing domains were explored in [8],
[9], but the need to avoiding lasing for our particular device has

Fig. 1. Unit cell configuration and its signal flow.

not been examined. We have developed mapping strategies for
the unit cell, which are independent of the results in [8], [9]. At
the desired operating frequency range and with a sufficiently
large sampling frequency, classical IIR filter designs result in
poles that are very close to the unit circle. These poles in turn
correspond to component parameters of the PIC that can cause
lasing. To address this issue, we modify the poles and zeros
that result from classical designs, such as the elliptic filter,
to obtain a magnitude response that has a suitable passband,
while avoiding lasing.

The rest of this paper is organized as follows. Section
II explains the basic operation and structure of a PIC unit
cell, and briefly describes its components. This section also
provides an overview of the basic Fabry-Perot etalon [11].
Section III presents filter design techniques and a parameter
mapping for governing the behavior of the physical unit cell.
The Fabry-Perot etalon is used to demonstrate the relationship
between an optical scattering coefficient and thez-domain
transfer function. Example results of the designs and responses
of the PIC are shown in Section IV, and Section V provides
a summary of the filter design.

II. PHOTONIC FILTER OVERVIEW

A PIC processes information signals carried on optical
wavelengths in the visible spectrum. The structure under
consideration here consists of a cascade of unit cells, each
of which can be viewed as the basic building block of the
overall system. A unit cell functions similar to a second-
order IIR system providing individually controllable poles and
zeros, and has the three previously-mentioned components:
MMI, SOA, and PM. The MMI is an optical device that splits
or combines its input signals [5], and is characterized by a
transmission coefficient and a coupling coefficient. The SOA
provides a signal gain, whereas the PM changes the phase
[6], [7]. The arrangement of the MMI, SOA, and PM for the
unit cell considered here is shown in Figure 1. With these



Fig. 2. Fabry-Perot etalon and its signal flow.

three components, feedforward and feedback structures can
be implemented and reconfigured to process optical signals.

The input-output relationship of an optical system is mod-
eled by a scattering coefficient [11]. To demonstrate the use
of a scattering coefficient for signal processing, we examine
a basic optical element known as the Fabry-Perot etalon,
which functions as a simple optical narrowband filter. It
is characterized by two sets of reflection and transmission
coefficients{t1, r1, t2, r2}, the lengthL of the device, and the
propagation constant̃β of the material [11]. Figure 2 shows a
block diagram of the Fabry-Perot etalon and its signal flow.

The etalon is typically made of two reflecting surfaces.
When an incident signals(t) strikes the interface of the etalon
from either material with indexn1 or n3, part of the signal
will reflect according tors(t), while the rest transmits through
as ts(t), wherer and t satisfyr2 + t2 = 1. Inside the etalon,
the signal magnitude and phase will change due to properties
of the material according toe−jβ̃L, where β̃ is the complex
propagation constant of the material with indexn2. Example
indices aren1 = n3 = 1.0003 for air and n2 = 4.24 for
silicon. For a symmetric (r1 = r2) and lossless (βi = 0)
Fabry-Perot etalon, Figure 3 shows the optical response of
the structure conveyed by the transmission coefficientS21

described in the next section. Observe that it is a periodic
function of βL whereβ is the attenuation component ofβ̃.

The spacing between two adjacent resonator modes, known
as the free spectral range (FSR) [11], is given byFSR =
c/2nL where c is the speed of light,n is the index of
the material, andL is the length of the device. As seen in
Figure 3, the FSR corresponds to one period of the plot; the
repeating nature of the optical pole graph translates to an
inherent sampling frequency offs = FSR. With knowledge
of the parameters of the device and its optical behavior, we
can establish a correspondence between the optical response
and az-domain transfer function and thus the corresponding
frequency response.

The problem of lasing must be considered when designing
digital filters for the unit cell. Because feedback is needed
to create an IIR filter response, the unit cell contains a loop
configuration in the design. Since a loop results in an internal
power loss for the optical signal, an SOA is integrated into
the design. Lasing refers to the condition when the gain and
loss within the loop are equal, resulting in an output that is
independent of the input. The effect of lasing is closely related
to the instability of a digital filter with feedback. Therefore,
one must design the IIR filter poles to be sufficiently within the

Fig. 3. Fabry-Perot transmission response showing pole locations.

unit circle in thez-plane. For our unit cell, we have determined
that the pole magnitudes should be constrained to be< 0.995
in order to provide a margin of safety.

III. PHOTONIC INTEGRATED CIRCUIT

A. Basic Filter Design

The bandpass filter design requirements of interest are the
following: 10 GHz center frequency,50 MHz resolution, and
60 dB stopband attenuation. Using a twelfth-order elliptic filter
and a40 ps sampling period, we are able to meet the design
criteria. However, the resulting classical filter structure has
pole magnitudes exceeding0.995, which may cause the PIC
to exceed the lasing threshold. As a result, we use the elliptic
filter for a prototype design and derive a suboptimal filter by
adjusting the pole magnitudes.

B. Cascade System

The design is based on a cascade of second-order elliptic
filter sections. The transfer function of a second-order all-pole
system can be written in thes-domain as

H(s) =
1

s2 + 2ζωos + ω2
o

, (1)

which is characterized by the cutoff frequencyωo (natural
frequency) and the sharpness of the peakζ (damping ratio).
Since the poles occur as a complex conjugate pair of the form
−σ ± jω, (1) can be written as

H(s) =
1

s2 + 2σs + (σ2 + ω2)
(2)

where

σ = ζωo (3)

ω = ωo

√
1− ζ2. (4)

A cascade of second-order sections translates to fabricated
unit cells with a more rapid and stable configuration than
that possible using coupled resonators. The architecture of the
unit cell is based on using a second-order section as the basic
component of the filter design.



C. Pole Constraint

In the digital filter design, we must take into consideration
that the pole magnitudes should not exceed0.995 in the z-
domain in order to avoid lasing. To determine the correspond-
ing constraint on the pole locations, we start with the bilinear
transform that connects a digital design to the poles in the
s-domain, i.e.,

z =
1 + Ts

2 s

1− Ts

2 s

=
1− σ Ts

2 + jω Ts

2
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2 − jω Ts

2

(5)

whereTs is the sampling period. Since the magnitude ofz is
< 0.995, this corresponds to√(

1− σ Ts

2

)2
+

(
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2
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2

)2
+
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)2
< 0.995. (6)

After a few equation manipulations, we arrive at the following
expression:(

σ − 398
Ts

)2

+ ω2 <
397.9952

T 2
s

, (7)

which we see is the equation of a circle. As shown in Figure 4,
the region of the constrained poles is entirely to the left of
the imaginary axis, which is required for general stability,
and is vertically centered about the real axis to allow for a
complex conjugate pair. Observe that the poles are constrained
to be further away from the imaginary axis with increasing
frequency.

D. Parameter Mapping

We can establish a connection between the optical character-
istics of the unit cell and itsz-domain response by examining
the Fabry-Perot etalon. The signal flow of this device is
modeled using scattering coefficients [11], which provide the
relationships between signals at the input and output ports.
Although the etalon has two input ports and two output ports
(such that a signal can enter or exit the device from materialn1

or n3), initially we are interested in the relationship between
input port 1 and output port 2, as indicated in Figure 2. The
other input and output ports typically involve feedback signals
in a cascade structure, and thus they are not of interest for a
standalone etalon. The scattering coefficient from port 1 to
port 2 is

S21 =
t1t2e

−jβ̃L

1− r1r2e−2jβ̃L
(8)

where{t1, t2} are the transmission coefficients,{r1, r2} are
the reflection coefficients, and

β̃ = β + jβi (9)

is the propagation constant of the material characterized by
the attenuation constantβ and the phase constantβi. The real

Fig. 4. Constrained pole region in thes-plane due to (7) withTs = 40 ps.

part of e−2jβ̃L can be factored out such that

S21 =
t1t2e

βiLe−jβL

1− r1r2e2βiLe−2jβL
, (10)

and sincet21 + r2
1 = t22 + r2

2 = 1, we can write

S21 =

√
1− r2

1

√
1− r2

2e
βiLe−jβL

1− r1r2e2βiLe−2jβL
. (11)

The scattering coefficientS21 describes the relationship
between the input signal and the output signal as a function of
wavelength. When designing a digital filter, we are interested
in the z-domain response. To obtain the proper conversion,
note that the smallest unit of time is the delay of a signal
through the etalon of lengthL. Thus,βL is the fundamental
frequency of the system, so that inz-domain we have the
transfer function

H21(z) =

√
1− r2

1

√
1− r2

2e
βiLz−T

1− r1r2e2βiLz−2T
(12)

where z−T corresponds to the fundamental delay of the
system. For this particular structure, there is a single zero
z1 = 0 and two polesp1,2 = ±√r1r2e

βiL. The Fabry-Perot
etalon is a simple structure that demonstrates how to map
from a scattering coefficient to the transfer function in thez-
domain. The process can be extended to the more complicated
unit cell used in the PIC and derived from a combination of
MMIs, SOAs, and PMs. These elements allow for control of
the pole and zero locations in the PIC, and thus we can design
digital filters that model and govern the behavior of the optical
system.

IV. EXAMPLE RESULTS

The following filter design results were obtained by first
constructing an elliptic filter with six cascaded second-order
sections, and then adjusting the pole magnitudes. The angular
locations of the poles were kept the same while theζ value for
each section was modified to meet the magnitude constraint
to avoid lasing. The zeros were then moved to different
frequencies so that their effect on the rise of the passband



Fig. 5. Digital and analog elliptic filter designs. The dotted lines indicate
the responses for the second-order sections.

Fig. 6. Frequency response of the filter design with a pole magnitude
constraint.

was minimized. Figure 5 shows the original digital and analog
designs; the resulting filter response that meets the0.995
magnitude constraint is provided in Figure 6. Figure 7 shows
the transmission response of the unit cell (similar to that in
Figure 3), and Figure 8 is the corresponding digital filter
frequency response.

V. CONCLUSION

We considered design methods for a reconfigurable optical
filter consisting of unit cells that contain SOAs, MMIs, and
PMs. As demonstrated with the Fabry-Perot etalon, the signal
flow characteristic of a PIC can be mapped to a transfer
function in thez-domain by examining a scattering coefficient.
In order to model and govern the PIC’s operation, we consid-
ered a twelfth-order elliptic bandpass filter with a10 GHz
center frequency, a50 MHz resolution, and a60 dB stopband
attenuation. However, due to the possibility of lasing in the
device, we derived a suboptimal filter from this prototype
design that constrains the pole magnitudes to be< 0.995.
This design that can be physically realized in an optical filter
operating in the10 GHz range without causing lasing.
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