

Efficient Sources for Chip-to-Chip → Box-to-Box Communication within Data Centers

IEEE Photonics Society Summer Topicals Optical Networks and Devices for Data Centers

> PaperTuD2.1 (Invited) 20 July 2010

Larry A. Coldren

ECE and Materials Departments University of California, Santa Barbara, CA 93106

<u>coldren@ece.ucsb.edu</u>

Data is King

• Today traffic on the core network is nearly all data

- **Drivers:**
- Goggle
- Microsoft
- Yahoo
- Facebook
- Ebay
- You Tube
- Programmed Stock trading
- Amazon
- •AOL
- Super computer com

New super-computer intraconnection also major driver for data-links

A Typical Data Center

JCSB

- > 30 MW power requirements
- Requires many Gb/s of bandwidth—justifies 100Gb-Ethernet

- UCSB
- In addition to high data rates via serialization, some degree of parallelism is necessary
 - WDM
- ✓ Space Division (Fiber arrays; multicore)
 - Higher Spectral Efficiency (as in long-haul)
 - External modulation/advanced formats
 - Photonic ICs for SWaP and \$
 - Coherent receivers
 - Questions of power and cost for Datacom

What about photonic switching?

Both Communication and Switching Power Dissipation a Concern

- UCSB
- <u>**Problem</u>**: Bandwidth demands scaling faster than both silicon and cooling technologies: Communication power = 40%; Processing/sw power = 60%</u>

•Maximum configuration for CRS-1: 92 Tbps \rightarrow 72 line card shelves + 8 fabric shelves •~1 Megawatt!!!

Cisco CRS-1 Router

Photonic Switching: the MOTOR Chip an 8 x 8 Space Switch

- A <u>monolithic tunable optical router (MOTOR)</u> chip to function as the switch fabric of an all-optical router
 - Line rate: 40 Gbps / channel
 - Total capacity: 640 Gbps
 - Error-free operation
- Photonic integration technologies designed for high-yield, large-scale applications
- World's largest and most complex Photonic IC (2009)

Coldren IEEE Summer Topicals 072010

•Steven C. Nicholes, M. L. Mašanović, E. Lively, L. A. Coldren, and D. J. Blumenthal, *IPNRA* '09, Paper IMB1 (July, 2009); also *JLT*, (Jan. 2010).

Large-Scale Photonic Integration

- Many components replaced by a single chip that integrates the functionality of all together
- Saves the cost and complexity of manufacturing as well as interconnecting many parts
- First we illustrate an integrated wavelength converter
- Second, we illustrate eight wavelength converters integrated with an 'Arrayed-Wavelength-Grating-Router' (AWGR) –which acts like a prism

MOTOR Results : Constant Input Port– 40 Gbps RZ

LASOR

 Power penalty at BER = 1E-9 for PRBS 2⁷-1 data at 40 Gbps < 3.5 dB(no AR coating)

Power Diss: < 2 W/channel

Optical Interconnects: High Data Rate Density

High Speed Cables

High Speed Connectors

•IBM Federation Switch Rack

•Electrical

•Optical

- > Optics enables high-density integration and better cooling efficiency
- > More that just Power \rightarrow SWaP

Optical Datacom Directions

<u>VCSEL</u> @ 35 Gps (UCSB) VCSEL-Det Link @ 35 Gps (UCSB + UVA)	0.3 mW/Gps (efficient VCSEL) (~0.6 mW/Gps"receiverless")	0.2 mW/Gps (2010) @ 50 Gps 0.4 mW/Gps (2010) @ 50 Gps
<u>PARALLEL FIBER LINK</u> : Maui: 48 x 10.4 Gps = 0.5 Tb/s fiber link	6.6 mW/Gps (VCSEL - detector arrys with driver and reciever electronics)	~1 mW/Gps Active Cables/VCSELs (2015) ~10 mW/Gps /Si-photonics with sources
<u>PARALLEL BOARD LINK</u> (chip-to-chip): Terabus: 24+24 x 12.5 Gps = 0.3 Tb/s Full Duplex	10 mW/Gps (VCSEL –detector arrays with polymer waveguides and electronics)	~1 mW/Gps /VCSEL arrays or Si- photonics not counting off-chip sources. ~10 mW/Gps/Si-photonics inc. sources
ON-CHIP NETWORK (future dream): 3-D CMOS: Logic, memory & photonic planes Parallel + WDM + Serialization in Photonics?		~300 cores (2018) >70 Tb/s on-chip (<1pJ/bit → 1 mw/Gps) Need serialization (latency)
Coldren IEEE Summer Topicals 072010		

Progress in High-Speed VCSELs

H. Hatakeyama, T. Anan, et al, "Highly reliable high speed 1.1µm-InGaAs/GaAsP-VCSELs," *Proc. SPIE-VCSEL XIII*, **7229**, 02-1 (2009)

3

Current (mA)

Light Output vs Current

Pulsed After

AR coating

5

6

CW After AR coating

CW before AR coating

4

200

160

120

80

960

n m

2

Light Out (µW)

The case for 980-1100nm (strain/GaAs*)

- Higher-intrinsic modulation bandwidth @ lower current density $f_{R} = \left[\frac{v_{g}a}{qV_{n}}\eta_{i}(I - I_{th})\right]^{1/2}$
- Lower threshold & better efficiency
- Improved reliability
- Lower fiber loss
- Lower fiber material dispersion
- Transparent substrate (flip-chip/backside optics/simple contacts, etc.)

Standards not an issue in Active Cables

*vs 850 nm / GaAs

High-Speed, Efficient VCSELs (2007)

Distance (nm)

IMPROVEMENTS

- Novel tapered oxide aperture
 - Small mode
 - Low loss
- Parasitics reduced
 - Deep oxidation layers
 - DBR BG-engr /low loss

 Highest bandwidth/power dissipation: (35 Gb/s)/10 mW total (2007-2009)

40Gb/s

shows errors

• Highest bandwidth 980 nm VCSELs

Blunter Tapered Oxide Reduces Mode Volume

5.0

5.0

 $\lambda/2n$ aperture thickness

5 μm

3.5

3.0

Taper length (µm)

2.5

2.0

4.0 \.

Aperture diameter

increases

Trade-off between optical scattering loss and mode confinement

Advantages over the original design:

- **Better mode confinement**
 - For 3 µm devices, mode volume reduces 1.73 times, corresponding to a 31% increase in Dfactor
- Does not introduce significant optical loss
- Lower parasitic capacitance due to thicker oxide

n

1.0

1.5

3.5

3.0

* E. R. Hegblom et al., IEEE J. Sel. Top Quantum Electron., vol. 3, pp. 379-389, 1997

Extrapolations for Single-mode VCSELs

Experimental small-signal response

- 15 GHz achieved at 1 mA ($P_{diss} = 1.3 \text{ mW}$)
- BW > 20 GHz @ I > 2 mA \rightarrow highest for 980 nm VCSELs
- Limited by multimoding (1 > 1.5 mA)
- Data rate limited to 35 Gb/s @ 10 mW (0.29 pJ/bit)

Theoretical curve fits to single mode data (*I* < 1.5 mA)

- Extrapolated to higher currents assuming single mode is maintained
- > 40 Gb/s predicted
- Further improvements anticipated
 - Add p-modulation doping
 - Add additional strain
 - 50% increase in differential gain realized
 - > 50 Gb/s predicted

P-Modulation Doping Improvements

- Strained InGaAs QWs with p-type modulation doping
 - increase differential gain
 - Reduction in transparency carrier density
- Broad area lasers demonstrated >50% reduction in threshold current
- Can lead to marked increase in frequency response over conventional VCSELs

Gain Characteristic Comparison: 850, 980, 980 MD, 1060 nm

• Data from edge-emitters cleaved to various lengths

Measured data used for 1060 nm and modulation-doped 980nm; well-established theoretical plots for undoped 980 nm and 850nm

- For 500 cm⁻¹:
 - InGaAs QWs @ 1060 nm require ~ 21% of the current vs GaAs
 - InGaAs QWs @ 980 nm require ~ 43% of the current vs GaAs

Differential gain – the "a-factor"

NEC Results: 1100 nm High-Speed

High-speed 1.1-µm-range InGaAs VCSELs

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T.Akagawa, K. Tokutome and M. Tsuji

Nanoelectronics Research Laboratories, NEC Corporation, Shiga

Paper OThS5, OFC 2008

• Developed high-speed 1.1 μ m InGaAs VCSELs for optical interconnections. A wide bandwidth of 20 GHz and error-free 30 Gbps 100 m transmission have been achieved with oxide confined VCSELs.

• Developed BTJ-VCSELs with high modulation bandwidth up to 24 GHz.

NEC Results: 1100 nm & Reliability

Highly reliable high speed 1.1µm-InGaAs/GaAsP-VCSELs

H. Hatakeyama*, T. Anan, T. Akagawa, K. Fukatsu, N. Suzuki, K.Tokutome, M. Tsuji, Nanoelectronics Research Laboratories, NEC Corporation, 2-9-1 Seiran, Otsu, Shiga, Japan. Proc. of SPIE Vol. 7229 722902-2 (2009)

- 25 Gb/s
- BER < 10^{-12}

- Developed 1.1-µm-range oxide-confined VCSELs with InGaAs/GaAsP MQWs, and demonstrated 25 Gbit/s-100°C error-free operation.
- Investigated reliability of the VCSELs, and results of accelerated life tests showed extremely long wearout MTTF life times of <u>10 thousand hours</u> under a junction temperature of <u>208°C</u>.
- Revealed that a major failure mode of the device was caused by <110> DLDs, which generated in the n-DBR layers. Coldren IEEE Summer Topicals 072010

Furukawa Results: 10 x 12Gb/s, High Efficiency & Reliability

Experimental demonstration of low jitter performance and high reliable 1060nm VCSEL arrays for 10Gbpsx12ch optical interconnection

Keishi Takakia, et al

Photonics Device Research Center, Furukawa Electric co., Chiba, Japan, 290-8555

Proc. of SPIE Vol. 7615 761502-2 (2009)

• Demonstrated high reliability and low power consumption operation with Furukawa's 1060nm VCSEL arrays.

- Power dissipation per speed of <u>5.5Gbps/mW</u> would be the most power saving VCSEL operation to our knowledge.
- Also, highly reliable performance was verified, especially no degradation of threshold current and eye diagram was demonstrated experimentally. Estimated FIT number was 81 FIT/ch and if one solved failure mode would be removed, 48 FIT/ch and 576 FIT/array would be potentially expected.
- A wide operating time in random failure regime was shown through the extra high stress test as $120^{\circ}C$ and $>40kA/cm^{2}$.
- More than 800 years of operation in normal operating condition as 40°C and 6mA was obtained under $E_a=0.7$ and n=3.

Summary of Charge Depletion VCSEL (JVCSEL)

• Novel quantum-barrier design to separate n regions

- Parameters from experimental diode VCSELs (f_{3dB} ~ 25 GHz @ 6 mA)
- JVCSEL (f_{3dB} ~ 85 GHz @ 6 mA) → BW continues to increase with bias (photon rate equation is directly modulated by modulating charge separation—gain—not current)
- Gate parasitic capacitance can be made low by increasing set-back to trade off RC cut-off with drive voltage (for $V_g = 0.5V$, $f_{RC} \sim 150$ GHz)

Conclusions/Summary

- Photonic devices can address power dissipation as well as SWaP issues in both the switching and optical interconnect fabrics of data centers
- Practical, highly-reliable, high-efficiency, high-bandwidth VCSEL sources having a number of advantages can be made, but are not being widely developed commercially— 1060 vs. 850 nm issue. Should this change?
- Direct modulation rates ~ 50Gb/s seem viable; rates of 100Gb/s are conceivable in the future without the need for high current densities
- Maximum data rates determined by electronics and multiplexing circuits, not O/E devices
- Techniques as WDM or advanced modulation formats may add additional parallelism desired to keep data rates finite, once serialization & space-division approaches saturate.