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ABSTRACT 

Cavity quantum electrodynamic (QED) effects are studied in semiconductor microcavities embedded with InGaAs 
quantum dots.  Evidence of weak coupling in the form of lifetime enhancement (the Purcell effect) and inhibition is 
found in both oxide-apertured micropillars and photonic crystals.  In addition, high-efficiency, low-threshold lasing is 
observed in the photonic crystal cavities where only 2-4 quantum dots exist within the cavity mode volume and are not 
in general spectrally resonant.  The transition to lasing in these soft turn-on devices is explored in a series of nanocavities 
by observing the change in photon statistics of the cavity mode with increasing pump power near the threshold.    
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1. INTRODUCTION 

Many proposed implementations of quantum communication and computation in condensed matter systems rely on 
having a strong interaction between a localized two-level system and a high quality cavity mode [1, 2].  If the coupling 
strength (which is inversely proportional to the square root of the mode volume) between the two oscillators is weak 
compared to the lifetime of either the emitter or the cavity mode, then the coupling is said to be in the weak coupling 
regime.  In this regime, the primary effect of the cavity mode is to enhance the lifetime of the emitter and this is called 
the Purcell effect [3].  This Purcell enhancement factor is proportional to the ratio of the quality factor (Q) of the cavity 
mode to the effective mode volume (Veff).  In addition, if the emitters can provide enough gain to compensate for the 
cavity decay rate, then lasing may be observed.  In the case of semiconductor microcavities embedded with quantum 
dots (QDs), both of these interesting phenomena can be studied.   

 

2. DEVICE GROWTH AND FABRICATION 

 

2.1 InGaAs Quantum Dots embedded in Oxide-Apertured Micropillar Cavities 

A low-density, single layer of InGaAs, self-assembled quantum dots is grown by molecular beam epitaxy in the 
Stranski-Krastanow growth mode.  InGaAs islands are partially covered with GaAs and then annealed before completely 
capping with GaAs.  This process shifts the emission spectrum of the QDs to the blue (near 930 nm) where Silicon-based 
single photon counting detectors work more efficiently.  A low density of these QDs acts as the active region between 
two high quality AlGaAs/GaAs distributed Bragg reflector (DBR) mirrors.  Just above the QD active region an oxide 
aperture is introduced [4].  This aperture is created by oxidizing a thin layer of pure AlAs, forming AlxOy.  This 
oxidation is allowed to proceed until a small aperture of roughly 2 � m is created in the center.  The AlxOy has a lower 
index of refraction than the surrounding material so the aperture acts as a lens and confines the mode to the center of the 
pillar.  This has a two-fold effect; it keeps the field away from the sidewalls, which limits the Q of most micropillars, and 
it reduces the mode volume.  In total, it serves to increase the Purcell factor.  The pillars are defined by optical 
lithography and reactive ion etch and a SEM image of one is shown in Fig 1.  An array of devices is created with varying 
total pillar diameter to achieve the optimum Purcell factor and account for small errors in oxidation time.    
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2.2 InGaAs QDs embedded in Photonic Crystal Membrane Cavities 

Using a similar low density QD sample, photonic crystal (PC) cavities are formed by defining a triangular lattice of air 
holes by electron beam lithography.  Then, holes are created along with the membrane by chemical etching in HF.  Line 
defect cavities are formed by selective removal of 3, 7 or 11 holes (L3, L7, and L11 cavities) to create a defect region.  
An example of a SEM image of an L3 cavity is shown in Fig. 1.  Strong optical confinement in the plane is provided by 
the 2-D photonic crystal while out of plane confinement is provided by the GaAs air interface at the top and bottom of 
the membrane.  Device parameters such as hole radius, lattice spacing, and membrane thickness are optimized to provide 
the highest Q while keeping the mode volume as small as possible. 
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Fig. 1. Scanning electron microscope (SEM) images of an oxide-apertured micropillar (left) and an L3 PC cavity (right). 

 

3. EXPERIMENTAL SETUP 

 
3.1 QD and Device Spectroscopy 

The QDs and the devices are primarily studied using micro-photoluminescence spectroscopy.  The samples are kept in a 
He-flow cryostat operated at 4.2 K with a heater capable of increasing the temperature to 300 K.  Carriers are excited in 
the samples by a pulsed 82 MHz Ti:Sa laser with approximately 100 fs pulse width.  This laser is primarily operated at 
850 nm to excite carriers resonantly into the wetting layer.  Additionally, continuous wave lasers operating at 780 nm 
and 632.8 nm can be used for above-bandgap excitation.  These sources are focused through a 50X objective with NA = 
0.55 onto the sample surface as shown in Fig. 2.  Emission is imaged through the same objective where it is picked off 
by a beamsplitter (BS) and directed into a 1.25 m spectrometer with a liquid nitrogen cooled CCD array, yielding a 30 
� eV spectral resolution at 900 nm.     

 

3.2 Lifetime and Hanbury-Brown and Twiss Measurements 

Lifetime measurements of single QDs are performed with pulsed excitation using a single photon counting avalanche 
photodiode in conjunction with a time-to-amplitude converter card.  Before detection, single QD spectral lines are 
chosen and spectrally filtered with a 0.5 nm bandpass filter as shown in Fig. 2.  Hanbury-Brown and Twiss 
measurements are performed by incorporating a beamsplitter and another single photon detector as shown in Fig 2.  This 
measures the second-order coherence of the emitted light and can be used to determine information about the photon 
statistics of the emitted light field. 
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Fig. 2. A schematic of the experimental setup.  The excitation laser is directed though an objective onto the sample surface.  
The collected photoluminescence can then be directed into the spectrometer, the lifetime setup, or the Hanbury-Brown 
and Twiss setup. 

 

4. RESULTS 

 
4.1 Cavity mode spectra 

As shown in Fig. 3, the fabrication processes described in the previous section display high Q cavity modes in the 
spectral region of QD s-shell transitions.  The spectra from the micropillar (Fig. 3) can be analyzed to determine the Q 
and values greater than 30000 (the resolution limit of the spectrometer) have been measured [5].  Comparing the mode 
spacing to values predicted from simulations, the mode volume can be determined to be approximately 51 (� /n)3.  This 
yields an expected Purcell factor of around 72.  The photonic crystal spectra can be analyzed to determine the Q and 
values nominally around 12000 are obtained.  Mode volume calculations have been carried out by finite-difference time-
domain simulations and typical values for the lowest order mode are around 0.68 (� /n)3.   
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Fig. 3. Micro-photoluminescence spectra of cavity modes in the micropillar structure (a.) and the L3 photonic crystal cavity 
(b.).  Both measurements were done at 4.2 K with the pump power high enough to saturate the QD transitions. 



 
 

 

 

 

4.2 QD lifetime measurements 

Measurements of single QD lifetimes on and off resonance with the cavity mode have also been carried out.  Lifetimes 
for dots on resonance with micropillar cavity modes have been shown to be as small as 200 ps (our measurement 
resolution), corresponding to a Purcell factor of more than 6.  As shown in Fig 4a, the lifetime decreases as the dot is 
brought into resonance with the cavity mode as expected by the Purcell effect.  Measurements of QDs in photonic crystal 
cavities have shown lifetimes as long as 10 ns as shown in Fig 4b.  This suggests that while the QD may be in spectral 
resonance with the cavity mode, its lifetime is inhibited due to spatial displacement from the cavity field maximum.  
Enhanced lifetimes are much harder to obtain experimentally due to the small probability of a dot being both spatially 
and spectrally on resonance with the cavity mode. 
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Fig. 4.  a). A plot of the lifetime of a single QD on resonance with a micropillar cavity mode.  The lifetime measurement is 
limited by the APD response (shown as the segmented line) of 200 ps.  For comparison, a line showing a typical bulk 
QD lifetime of 1200 ps is shown. b).  A plot of a QD inside a photonic crystal structure demonstrating a lifetime 
around 10 ns.  This strong inhibition of the lifetime suggests the dot is spatially displaced from the maximum of the 
field.  A typical bulk QD lifetime is shown for comparison. 

 

4.3 Lasing in PC cavities 

Analysis of the intensity and linewidth of PC cavity modes as a function of input pump power reveals lasing behavior in 
these devices as shown in Figure 5.  The soft-turn on and low-threshold characteristics of these cavities demonstrates a 
high coupling of spontaneous emission into the mode, called the �  factor, of around 0.85 [6].  Lasing was unexpected 
due to the extraordinarily low QD density as well as the fact that the sharp transition lines of the QDs are not spectrally 
resonant with cavity mode.  Because of the high �  factor, the onset of lasing action is hard to distinguish from other 
sources of nonlinear output behavior.    
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Fig. 5. Output count rate and linewidth of an L3 cavity mode vs. input power from a continuous wave 780 nm source.  

 

4.4 Second-order correlation measurements for PC lasers 

To validate the onset of lasing in the PC cavity devices, second order intensity correlation measurements were performed 
at pump powers near the lasing threshold.  As shown in Figure 6, g(2)(0) increases to a value near 2 and then 
subsequently diminishes to 1 as the pump power is increased.  Theoretically, one expects the photon statistics of a cavity 
mode below the laser threshold to behave like a thermal light source, corresponding to g(2)(0) = 2.  Once lasing is 
established, the photon statistics are described by a coherent state with Poissonian statistics, corresponding to g(2)(0) =1.  
The results in Figure 6 demonstrate exactly that aside from the initial increase.  This initial increase is attributed to the 
transition from the uncorrelated spontaneous emission regime to the stimulated emission regime.  If the mode is 
comprised of uncorrelated spontaneous emission events, g(2)(0) =1.  Once stimulated emission sets in, g(2)(0) tends 
toward the thermal value of 2. 
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Fig. 6.  g(2)(0) vs. threshold normalized pump power for an L11 laser.  The insets show the corresponding g(2)(� ) at two of 
the measured pump powers. 

 

5. CONCLUSIONS 

 
In conclusion, a wide variety of phenomena associated with cavity QED have been investigated using InGaAs quantum 
dots embedded in two different semiconductor nanocavity structures.  Weak coupling in the form of the Purcell 
spontaneous emission enhancement has been experimentally found for QDs interacting with oxide-apertured micropillar 
cavity modes and strong inhibition has been demonstrated for QDs inside photonic crystal defect cavities.  While a 
strong enhancement has not been found for PC cavities, advances in active QD positioning will enable future 
experiments in both the weak and strong coupling regimes [7].   

Surprisingly, the photonic crystal cavities demonstrated the onset of lasing with increasing pump power.  This was 
unexpected considering the low QD density along with the spectral mismatch of the sharp s-shell transitions and the 
cavity mode.  Subsequent measurements of the photon statistics as a function of pump power near the lasing threshold 
validate the claim of lasing and are an important addition to the standard input-output and linewidth measurements.  
They are an essential measurement because of the soft turn-on nature of these high � , low threshold lasers, which can 
make identification of lasing action difficult [6].    
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