InGaAsP/InP gain-levered tunable lasers

John M. Hutchinson‡, Leif A. Johannson†, Jonathan T. Getty†, Jeffrey A. Henness*,
Larry A. Coldren‡

‡ Materials Engineering, University of California, Santa Barbara, CA 93106
† Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106
‡ Intel Corporation, Strategic Technology

Phon: 805-893-3831, Fax: 805-893-4500, Email: john.hutchinson@intel.com

Abstract
A tunable gain-levered laser is fabricated on an InGaAsP ridge waveguide, and demonstrates increased CW differential efficiency and sharp DC turn-on, with hysteretic characteristics. The devices can be directly modulated up to > 2.5 Gb/s.

I. Introduction
Bistable laser diodes have been proposed for use in optical networks due to their enhanced differential quantum efficiency (DQE), signal regeneration properties, and even implementation of all-optical flip-flops[1]. Gain-levered lasers have demonstrated improved noise figure (NF) in passive microwave fiber-optic links[2]. Fabry-Perot ridge lasers with saturable absorber sections are one additional implementation and have demonstrated sharp DC turn-on characteristics[3].

In this work, we report on the implementation and performance of a gain-levered widely-tunable laser. The design utilizes a tunable sample-grating distributed Bragg reflector (SGDBR) laser [4] and splits the laser gain cavity into two electrically segmented sections. The gain-levered cavity yields high quantum efficiency and sharp turn-on. The SGDBR mirrors ultimately allow full C-band tunability from the vernier effect. The gain levered SGDBR may be particularly useful getting the most efficient modulation out of a limited photocurrent for optical wavelength converters[5].

II. Gain levered SGDBR Laser Design
The device is illustrated schematically in Fig. 1(left) and consists of six sections with (from right-to-left) a SGDBR rear mirror, phase section, the QW cavity split into a 460 µm long section (gain) and a 90 µm long section (lever), a SGDBR front mirror and a 550 µm long output SOA. The device is fabricated with a common 1.4 Q InGaAsP waveguide, offset 1.55 µm QW for the amplifier, gain and lever sections, and a single blanket InP ridge regrowth. Details of the fabrication process are given in [5]. The output SOA is provided to boost the laser output power. Typical operation conditions are I_gain = 50 mA, I_lever = 5 mA, I_SOA = 50 mA for T_subs = 16°C.

Figure 1. (a) Cross-section schematic of gain lever SGDBR (b) Top-down micrograph of fabricated device (c) optical spectra for as a function of rear mirror current.
III. Device Results

The optical spectra for various rear mirror currents are superimposed in Figure 1(c) showing ~15nm of tuning with >35dB side mode suppression ratio. Continuous wave room temperature light-lever current measurements were taken as a function of gain section current (Figure 2a). With separately biased gain and lever contacts, I_{th} is reduced and slope efficiency at threshold is increased for increasing I_{gain}. With shorted gain and lever contacts, threshold current (I_{th}) was 30 mA. The L-I curve also shows hysteretic effects (Figure 2b). Small signal modulation response was measured on un-terminated devices (Figure 3a). Although we see hysteretic behavior in the L-I curve, the modulation bandwidth is at least as good as a conventional laser produced by shorting the contacts, 5.0 GHz for $I_{gain} = 60$ mA and $I_{lever} = 8$ mA. The devices were digitally modulated at 2.5 and 5 Gb/s and demonstrated open eyes as shown in Figure 3b and c.

Figure 2. (a) CW L-I data for gain-levered SGDBR with I_{gain} as a parameter (1548nm emission, 30 mA I_{SOA}) (b) hysteresis L-I curve showing dependence of L-I on increasing vs. decreasing lever current (1548nm emission, 70 mA I_{SOA}).

Figure 3. (a) Small signal gain lever laser bandwidth with I_{GAIN} as a parameter ($I_{SOA}= 30$ mA, $I_{LEVER} = 8$ mA) (b) 2.5 Gb/s NRZ eyes ($2^{31}-1$ PRBS, $I_{SOA} = 30$ mA, $I_{GAIN} = 60$ mA, $I_{LEVER} = 11$ mA, $V_{RF} = 1$ V) (c) 5 Gb/s NRZ eyes ($2^{31}-1$ PRBS) (same conditions as b)

IV. Conclusions

We have presented our design and the performance of a tunable gain-levered ridge laser. The gain-levered SGDBR tunable laser is fabricated on a robust InGaAsP waveguide, InP ridge process suitable for standard ridge lasers, and demonstrates increased differential efficiency and sharp DC turn-on characteristics. Small-signal RF bandwidth of 5 GHz and clearly open eyes at 2.5 Gb/s were demonstrated.

This work was supported by DARPA/MTO CS-WDM under grant No. N66001-02-C-8026 and by Intel Corporation under grant No. TXA001630000.

References

