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ABSTRACT  

Free-space beam steering using optical phase arrays are desirable as a means of implementing Light Detection and 
Ranging (LIDAR) and free-space communication links without the need for moving parts, thus alleviating vulnerabilities 
due to vibrations and inertial forces.  Implementing such an approach in silicon photonic integrated circuits is 
particularly desirable in order to take advantage of established CMOS processing techniques while reducing both device 
size and packaging complexity. 

In this work we demonstrate a free-space diode laser together with beam steering implemented on-chip in a silicon 
photonic circuit.   A waveguide phased array, surface gratings, a hybrid III-V/silicon laser and an array of hybrid III/V 
silicon amplifiers were fabricated on-chip in order to achieve a fully integrated steerable free-space optical source with 
no external optical inputs, thus eliminating the need for fiber coupling altogether.   The chip was fabricated using a 
modified version of the hybrid silicon process developed at UCSB, with modifications in order to incorporate diodes 
within the waveguide layer as well as within the III-V gain layer.  Beam steering across a 12⁰ field of view with ±0.3⁰ 
accuracy and 1.8⁰×0.6⁰ beam width was achieved, with background peaks suppressed 7 dB relative to the main lobe 
within the field of view for arbitrarily chosen beam directions.  

Keywords: silicon photonics, LIDAR, free-space communication, optical phased array, laser, hybrid silicon, integrated 
optics, beam steering, photonic integrated circuit 

 

1. INTRODUCTION  
The ability to steer and shape a beam in free space is of interest for a wide range of applications.  One application of 
especial note is light detection and ranging (LIDAR), which provides images at higher resolution than is possible with 
radar together with the capability to penetrate forest canopy and other obscurants such that hidden landmarks, vehicles, 
and personnel may be located and identified without sacrificing resolution by resorting to long-wavelength microwave 
radar [1].  Another application of particular interest is point-to-point free-space communication links, in which beam 
steering may be used either to select specific recipients for targeted burst transmissions or to maintain a link between 
non-stationary entities such that low bit-error-rate transmission is maintained despite location shift/sway (e.g. links 
between buildings) or even significant positional change (e.g. inter-satellite communication).  In either case, beam 
steering using adaptive optics generally requires the use of mechanically moving parts which are therefore subject to 
degradation in performance from inertial forces and vibrations as well as being susceptible to mechanical wear. 

1.1 Optical phased arrays and photonic integrated circuits 

Optical phased arrays can be used to steer and shape a beam in free space without mechanical motion [2], and have been 
demonstrated as such both for LIDAR [3] and for free-space communication links [4], however this approach has largely 
been implemented thus far using bulk optical components which must be assembled, aligned, and co-packaged.  An 
integrated optical approach in which all optical components are contained within a photonic integrated circuit offers 
several key advantages over bulk optical assemblies: 

(1) Size.  Since individual components are not coupled via either optical fiber or lens assemblies and do not require 
individual mechanical mounts, space can be devoted solely to a single mount for a chip which contains all 
required optical components within it, thus saving both volume and weight. 
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(2) Optical alignment:  since the optical components are fabricated together, optical alignment is accomplished by 
routing planar waveguides between components on-chip using standard lithography with nanometer-scale 
tolerances and without the need for independent alignment of micro-optical elements or optical fibers, thus both 
saving cost and improving system performance.   

(3) Tolerance of vibration and mechanical shock.  With optical alignment determined by on-chip fabrication rather 
than lenses and optical fiber, vibration and mechanical shock poses less of a risk to optical alignment since 
there are no mechanically-affixed components which can be shifted or shaken loose within the beam path.  

(4) Packaging cost.  By eliminating the need to separately assemble and align individual optical components as 
well as the need for robust mechanical sub-assembly fixtures to hold optical components in place relative to 
each other, overall packaging cost can be reduced.  Additionally, since the photonic integrated circuit can be 
encapsulated as a single chip, robust functionality in adverse conditions involving particulates and moisture can 
be achieved without resorting to hermetic packaging. 

1.2 Silicon photonics for optical phased arrays 

Optical phased arrays can be realized in photonic integrated circuits (PICs) using silicon photonics, thus taking 
advantage of the fabrication processes and facilities already in widespread use within the electronics industry.  Such 
PICs have been demonstrated using passive silicon waveguides/splitters and gratings together with resistive heaters for 
thermo-optic control [5][6][7] on silicon-on-insulator (SOI), but this approach necessitates an off-chip source laser 
which is coupled to the chip via either optical fiber or micro-optics and which must be co-packaged with the chip after 
being optically aligned, thus diminishing the advantages of using a PIC in the first place (although still vastly preferable, 
from a packaging standpoint, to aligning/co-packaging the much larger number of components that were thus 
successfully integrated on-chip).  Furthermore, since optical coupling from fiber to SOI involves a large index mismatch, 
reflections and losses at the interface are inevitable.  Optical propagation and scattering losses within the PIC are also 
inevitable, and the optical phased array itself cannot emit all power into the main beam lobe with 100% efficiency.   

It is therefore preferable to have a means of amplifying on-chip light rather than relying on huge input power coupled 
from a fiber at a single input.  Such a capability also offers the additional advantage of providing a means to compensate 
for phase-dependent losses which must necessarily be introduced on-chip as a result of fast phase-modulation techniques 
such as carrier-injection and carrier-depletion should beam sweeping at speeds in excess of that achievable thermo-
optically be required.  Particularly well-suited to this task is the hybrid silicon platform, in which III-V material is die or 
wafer-bonded to already-patterned SOI waveguides such that optical modes guided within the silicon layer can be 
electrically pumped due to their evanescent overlap with quantum wells in the III-V material.  This approach enables the 
integration of gain elements for on-chip amplifiers [8] and lasers [9] without the need for separate optical alignment of 
these components since they are patterned lithographically in the III-V after bonding to the silicon waveguides.  This 
report describes the design, fabrication, and demonstrated beam-sweeping capability of such a device. 

2. CONCEPT 
In a standard phased array for two-dimensional beam steering, emitter elements or antennae are arranged in a two-
dimensional array and phase adjusted to shape/steer the beam.  Free-space emission from waveguides in a planar 
photonic circuit can be achieved using surface gratings, however, and these have the advantage of functioning as 1D 
phased arrays in their own right since each grating tooth scatters power from the guided mode with a phase delay 
determined by the effective index of the mode propagating within the waveguide.  As such, the emission from a 
waveguide surface grating is a line in the far field whose emission angle is dictated by the grating pitch (i.e. period 
between grating teeth), waveguide effective index, and wavelength according to Eq. (1) 

ߠ	݊݅ݏ  = ஃ௡೐೑೑ିఒஃ . (1) 

By tuning wavelength, therefore, the beam in the far field can be steered in one axis and will automatically be collimated 
in that axis (subject to the finite length of the emission).  An array of such gratings enables two-dimensional beam 
steering since wavelength determines the beam direction in one axis (henceforth referred to as θ) and relative phase 
across the grating array determines the beam shape/direction in the other axis (henceforth referred to as ψ).  In overall 
concept the PIC-based optical phased array can be realized using a tunable laser coupled to a beam splitter to separate 
the beam into N channels, a phase modulator for each channel, and finally a grating emitter for each channel.  In practice 
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