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Abstract—We present a model for multi-wavelength mixing
in semiconductor optical amplifiers (SOAs) based on coupled-
mode equations. The proposed model applies to all kinds of
SOA structures, takes into account the longitudinal dependence
of carrier density caused by saturation, it accommodates an
arbitrary functional dependencies of the material gain and
carrier recombination rate on the local value of carrier density,
and is computationally more efficient by orders of magnitude
as compared with the standard full model based on space-
time equations. We apply the coupled-mode equations model
to a recently demonstrated phase-sensitive amplifier basedon
an integrated SOA and prove its results to be consistent with
the experimental data. The accuracy of the proposed model is
certified by means of a meticulous comparison with the results
obtained by integrating the space-time equations.

Index Terms—Semiconductor optical amplifiers, nonlinear op-
tics, wave mixing.

I. I NTRODUCTION

Semiconductor optical amplifiers (SOAs) have been in the
spotlight for many years, attracting ever growing interest
in multiple areas of applications. These include all-optical
signal processing in fiber-optic communication networks, cost-
effective local area transmission, and, more recently, integrated
silicon photonics, where SOAs are the building blocks for
the implementation of large-scale integrated photonic circuits.
Many of these applications rely on the mixing of the wave-
length components of the propagating electric field, and their
theoretical study can be performed by numerically integrat-
ing the coupled nonlinear equations describing the evolution
of the electric field envelope in the longitudinal direction
along the SOA, and the temporal carrier dynamics [1], [2].
Obviously, this approach is not suitable for the efficient
design of an SOA, owing to the intensive computational effort
that it involves. The search for computationally efficient and
analytically tractable models has yield the formulation of
what is sometimes referred to as areduced model for the
nonlinear SOA response [3], where the space-time equations
reduce to a single ordinary differential equation [3], suitable
for the analytic study of multi-wave mixing (see e.g. [3]–
[5]). The formulation of a reduced model hinges upon two
major assumptions. The first is that the spontaneous carrier
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recombination rate is proportional to the carrier spatial density,
and the second is that the material gain also depends linearly
on the carrier density. These assumptions emanate from early
studies of semiconductor lasers. Indeed, in lasers the carrier
density dynamics is characterized by small deviations froma
steady state value which is set by the threshold condition of
gain equalling the cavity loss. The small deviations around
this value are only caused by amplified spontaneous emission
(ASE) and by some spatial hole burning, which is however of
little significance because in most structures the intra-cavity
optical intensity is only moderately inhomogeneous. Conse-
quently, in laser structures, gain and spontaneous emission rate
can be accurately described by a linearized expression around
the steady state carrier density. Early studies on SOA structures
also used linear expressions for gain and carrier recombination,
and in this case the linearization, albeit less accurate, found its
ground on its simplicity and, more importantly, on the limited
gain of legacy SOAs, which implied a limited longitudinal
inhomogeneity of the optical field in the optical waveguide.

Unfortunately, these assumptions do not reflect the char-
acteristics of modern SOAs, as is clarified in what follows.
Modern SOAs may have linear gain in excess to 40dB,
implying a pronounced longitudinal inhomogeneity of the field
intensity and hence of gain saturation. This may cause, in some
cases, that the gain is only slightly saturated at the waveguide
input, whereas it is almost zero at the waveguide output, where
saturation is so high that the carrier density approaches its
transparency value. When this is the case, a linear expression
for the gain is reasonably accurate only if the gain does
not deviate significantly from the linear expansion around
the transparency carrier density over a range of values. The
nowadays widely accepted forms for the dependence of the
material gain on carrier density do not meet this requirement,
because over such wide range of carrier density values the
nonlinearity cannot be neglected, especially in quantum-well
(QW) SOAs devices [6]. This makes the use of linear forms
for the gain not an option for an accurate and quantitative
description of the SOA dynamics. In addition, advances in ma-
terial fabrication have made in modern devices the contribution
of defect-induced carrier recombination, which is proportional
to the carrier densityN , negligible, with the consequence
that spontaneous carrier recombination is dominated primarily
by radiative recombination, whose rate is proportional to
N2, and secondarily by Auger recombination, whose rate is
proportional toN3 [6]. This reality makes the linearization
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of the spontaneous recombination rate also a questionable
approximation. All these arguments together suggest that the
accuracy of models of the nonlinear SOA response based on
linearization of the carrier recombination rate and gain may
be, in state-of-the-art devices, highly inaccurate.

A natural approach to the study of wave mixing in SOAs,
which closely reminds coupled-mode theories, is the one based
on the derivation of evolution equations for the complex
amplitudes of the field frequency components. Somewhat
surprisingly, studies of wave mixing in modern SOAs (that
is, SOAs characterized by a nonlinear dependence of the
recombination rate and material gain on carrier density) based
on this approach seem to be absent in the literature. In a couple
of recent papers [7], [8], the authors assume a linear gain and
a polynomial recombination rate, as it would be appropriate
for bulk SOAs. However, they express the recombination rate
as RpNq “ N{τcpNq, where τcpNq “ N{RpNq has the
meaning of an equivalent spontaneous carrier lifetime and,
in the derivation of the coupled-mode equations, they replace
τcpNq with some time- and space-independent value. This
makes, again, the assumed carrier recombination rate linear.

Another distinctive assumption of all existing coupled-mode
approaches to multi-wave mixing in SOAs is that the carrier
density modulation induced by the mixing is characterized
by a single harmonic component [8]. This is a reasonable
assumption when a single frequency component is dominant
over the others, like for instance, in four-wave mixing (FWM)
experiments where a single pump and a frequency-detuned
weak signal are injected into the SOA. On the contrary, this as-
sumption is not satisfied when multiple frequency components,
detuned by a few gigahertz, have comparable intensities. This
configuration characterizes for instance experiments where
two strong pumps are injected at frequencies´Ω ` ω0 and
Ω ` ω0, and one is interested in the amplification of a weak
signal injected at the central frequencyω0. In this case, the
strongest carrier modulation occurs at the beat frequency2Ω

between the two strong pumps, but the signal amplification
is mainly affected by the, possibly weaker, carrier modulation
at frequencyΩ. This configuration recently became of great
interest because it describes the operation of a relevant class
of SOA-based phase sensitive amplifiers (PSAs) [9]–[12].

In this paper, we derive coupled-mode equations describing
multi-wavelength mixing in SOAs characterized by arbitrary
functional dependencies of the recombination rate and ma-
terial gain on carrier density. These include both QW and
bulk SOAs. The proposed model, which in what follows
we refer to as thecouple-mode model, takes into account
the frequency dependence of the material gain, as well as
all orders of the waveguide dispersion, and accommodates
input optical waveforms consisting of arbitrary combinations

of multiple frequency components.1 The implementation of
the model is illustrated in detail in the case of a QW SOA
characterized by a logarithmic dependence of the optical
gain on the carrier densityN , and by a cubic-polynomial
carrier recombination rateRpNq. The accuracy of the coupled-
mode model is successfully tested (unlike in previous related
studies) by means of a meticulous comparison with the results
obtained by integrating the space-time equations of the SOA
full model. Remarkably, owing to their inherent simplicity, the
coupled-mode equations imply computational costs by orders
of magnitude smaller that those required by the space-time
equations, thus enabling the efficient characterization ofmulti-
wave mixing in SOA structures, which would be otherwise
highly impractical. We then apply the derived coupled-mode
equations to studying the operation of a recently demonstrated
dual-pumped PSA based on an integrated QW SOA [11]. We
prove the results to be consistent with the experimental data,
and confirm the excellent agreement with the results obtained
by using the full SOA model.

II. COUPLED-MODE EQUATIONS FOR MULTI-WAVELENGTH

PROPAGATION INSOAS

We denote byEpz, tq the slowly-varying complex envelope
of the electric field propagating in the SOA in the temporal
reference frame that accommodates the field group velocity
vg, corresponding to the real field

Epz, tq “ Re

„

E

ˆ

z, t ´ z

vg

˙

e´irω0t´βpω0qzs



, (1)

with ω0 being the optical frequency. The field envelopeE
is normalized so that that|E|2 is the optical power flowing
through the transverse waveguide section. It is related to the
photon fluxP in photons per unit time and area through the
relation

|E|2 “ ~ω0SmodP, (2)

whereSmod “ S{Γ is the modal area of the waveguide, withS
denoting the effective SOA area andΓ the optical confinement
factor. The evolution ofEpz, tq along the SOA is governed by
the familiar equation

BE
Bz “ 1

2
rp1 ´ iαqΓĝ ´ αintsE ` iβ̂E ` rsp, (3)

whereα is the Henry factor,αint is the SOA internal loss
coefficient, andrsp is the spontaneous emission noise term.
By ĝ and β̂ we denote the material gain operator and the
wavenumber operator. The operator formalism allows us to

1We consider here only the nonlinearity that comes from carrier modulation,
neglecting ultrafast nonlinearity arising from carrier heating, two photon
absorption and spectral hole burning. This choice has been motivated to
keep the analysis simple, and also because we are interestedto cases where
nonlinearity is large enough to be used in all-optical processing applications
or to be an issue in applications where linearity is sought for. In these cases,
the frequency detuning does not exceed a few tens of gigahertz, and in
this detuning range the nonlinear modulation is mostly caused by carriers.
The inclusion of ultrafast processes, however, does not pose any conceptual
difficulties, and can be done along the lines of ref. [14] assuming that the
gain depends on quantities other than carrier density, likee.g. the carrier
temperature for carrier heating, or the energy-resolved population of carriers
for spectral hole burning, and assuming linear decay process of these quantities
towards their steady state values.
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conveniently accommodate the frequency dependence of the
gain as well as the waveguide dispersion to any order. Within
this formalism the two operators can be expressed as

ĝ “
8
ÿ

m“0

1

n!

BngpN,ω0q
Bωn

0

ˆ

i
B
Bt

˙n

(4)

β̂ “
8
ÿ

m“2

1

n!

dnβpω0q
dωn

0

ˆ

i
B
Bt

˙n

, (5)

wheregpN,ωq is the gain coefficient expressed as a function
of the carrier densityN and the optical frequencyω, and
βpωq is the frequency-dependent field propagation constant.
The expressions for̂g andβ̂ in Eqs. (4) and (5) are obtained by
expandinggpN,ωq andβpωq around the carrier frequencyω0.
The fact that the sum in Eq. (5) starts fromn “ 2 is consistent
with the definition of Epz, tq in Eq. (1), which already
accounts for the effect ofβpω0q anddβpω0q{dω0 “ 1{vg.

The spontaneous emission noise termrsp is modeled as
a zero-mean, complex phase independent random process. It
depends explicitly on the carrier density, besides time and
space, i.e.rsp “ rsppN, t; zq. Its correlation function is

E
“

r˚
sppN, t; zqrsppN, t1; z1q

‰

“ ~ω0R
1
sppN, t ´ t1qδpz ´ z1q,

(6)
where by the symbolE we denote ensemble averaging. Here
the term δpz ´ z1q accounts for the fact that different lon-
gitudinal waveguide sections provide statistically independent
contributions to the noise term, and

R1
sppN, t1 ´ tq “

ż

e´ipω´ω0qpt1´tqnsppN,ωqΓgpN,ωqdω
2π

,

(7)
is the spontaneous emission rate into the waveguide mode
and in the field propagation direction, withnsp denoting
the population inversion factor. Spontaneous emission is a
small perturbation of the propagating field, so that we may
safely replaceN with its temporal average, thus neglecting
the effect of its small fluctuations around this value. Within
this approximation the process of spontaneous emission can
be modeled as a stationary process in time.

The equation for the carrier density is

BN
Bt “ RJ ´ Rsp ´ Rnr ´ Rst (8)

where

RJ “ JwaL

V
“ J

ed
, (9)

is the carrier injection rate into the active volumeV “ SL “
wadL, wherewa is the active region width,L is the active
region length, andd is the active region thickness. The term
RsppNq is the recombination rate associated to spontaneous
emission, and its well approximated by the quadratic ex-
pressionRsppNq “ BN2. By RnrpNq we denote the non-
radiative recombination rate, which we express asRnrpNq “
AN`CN3, where the linear contributionAN is mostly due to
defect-induced recombination, and the cubic contributionCN3

to Auger recombination2. As for the stimulated recombination,
under the assumption that each stimulated emission process
corresponds to the emission of one photon and the annihilation
of one carrier, the stimulated recombination rateRst (which
also accounts for spontaneous emission within the waveguide
mode) is related to the photon fluxP through

RstSdz “ Smod rP pz ` dzq ´ P pzqs ùñ Rst “ 1

Γ

BP
Bz .

(10)
By combining the various mechanisms, Eq. (8) becomes

BN
Bt “ ´RpNq ` J

ed
´ 1

~ω0S

B|E|2
Bz , (11)

where byRpNq we denote the familiar recombination rate3

RpNq “ AN ` BN2 ` CN3. (12)

By expanding the derivativeB|E|2{Bz and using Eq. (3), Eq.
(11) assumes the form

BN
Bt “ ´RpNq ` J

ed
´ 1

~ω0S
Re rE˚p1 ´ iαqΓĝEs , (13)

where we used the fact that̂β is a Hermitian operator, and
hence it does not contribute toB|E|2{Bz. The last term
at the right-hand side of Eq. (13) reduces to the familiar
form Γg|E|2{~ω0S if the gain coefficient is assumed to be
frequency independent. In Eq. (13), we neglected the rate
of carrier depletion associated to the photons spontaneously
emitted in the guided mode, i.e. the termR1

sppN, 0q that
comes fromB|E|2{Bz of Eq. (11), because this term is small
compared the carrier depletion rate caused by the photons
spontaneously emitted over all spatial modesBN2, which is
part ofRpNq.

We note that Eqs. (3) and (13) can be generalized so as to
include the field polarization in the analysis. While this task
is rather straightforward and does not involve any conceptual
challenge, we intentionally ignore polarization-relatedissues
in order to keep the focus on the main objective of this work,
which is the study of multi-wavelength propagation.

We express the multi-wavelength electric field and the
carrier density as follows,

Epz, tq “
ÿ

k

Ekpzqe´ikΩt (14)

Npz, tq “ N0pzq `
ÿ

k

∆Nkpzqe´ikΩt, (15)

where the coefficients∆Nk must satisfy the equality
∆N´kpzq “ ∆N˚

k pzq for Npz, tq to be real. The term

2We note that, while the resulting cubic polynomial expression AN `
BN2 ` CN3 has been shown to fit very well the experimental data in
most cases [6], the one-to-one correspondence between the three terms of the
polynomial and the three recombination mechanisms is not always as neat
as is illustrated in the main text. For instance, in the case of non-parabolic
bands (the normal case), radiative recombination is also non-parabolic and is
best modeled with a bit of linear component; carrier leakage(due to finite
QW barriers) has an exponential dependence and requires a polynomial fit,
affecting the numerical values ofA, B, andC.

3This expression ofRpNq is widely established and is given here for
consistency with previous studies. We stress, however, that the analysis that
follows does not make use of it explicitly, and rather applies to arbitrary
expressions ofRpNq.
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N0pzq ` ∆N0pzq is the z-dependent time-independent value
of the carrier density that characterizes the system when it
achieves its stationary state, andN0pzq is defined as the
solution of

J

ed
“ RpN0q ` Γ

~ω0S

ÿ

k

gpN0, ωkq|Ek|2. (16)

For values of the frequency spacingΩ{2π that exceed the SOA
modulation bandwidth, the temporal fluctuations ofNpz, tq
around its stationary value are filtered by the carrier dynamics
and hence they can be treated within a perturbation approach.
A consequence of this situation is that the deviation∆N0pzq
of the stationary carrier density value fromN0pzq is also
a perturbation, and is small compared toN0pzq. In this
framework, all carrier-density dependent quantities thatappear
in Eqs. (3) and (13) can thus be expanded to first order with
respect to∆N “ N ´ N0, namely

RpNq “ RpN0q ` ∆N

τpN0q (17)

gpN,ωq “ gpN0, ωq ` gN pN0, ωq∆N, (18)

where by the subscriptN we denote differentiation with
respect toN . The quantity

τpN0q “ RN pN0q´1 “
«

dRpNq
dN

ˇ

ˇ

ˇ

ˇ

N“N0

ff´1

, (19)

is the spontaneous carrier lifetime, and

gN pN0, ωq “ BgpN,ωq
BN

ˇ

ˇ

ˇ

ˇ

N“N0

, (20)

is the differential gain. We stress thatthese are z-dependent
quantities, owing to the fact thatN0 “ N0pzq, and hence their
values evolve along the SOA. We also notice that the effective
carrier lifetime governing the dynamics of carrier modulation
around the steady state value is thedifferential carrier lifetime
τpN0q given in Eq. (19) and also introduced in [15], and
not the total carrier lifetime τcpN0q “ N0{RpN0q used in
Refs. 7 and 8. The difference between these two quantities
is approximately a factor of2 when the radiative bimolecular
recombinationBN2 is the dominant contribution toRpNq,
or 3 when the Auger recombinationCN3 is dominant. By
inserting Eqs. (17) and (18) into Eq. (3) and Eq. (13) we
obtain

BE
Bz “ 1

2
rp1 ´ iαqΓpĝ0 ` ∆NĝN q ´ αintsE ` iβ̂E ` r, (21)

and

B∆N

Bt “ ´ ∆N

τpN0q ´
„

RpN0q ´ J

ed



´Re rE˚p1 ´ iαqΓĝ0Es
~ω0S

´∆N
Re rE˚p1 ´ iαqΓĝNEs

~ω0S
, (22)

where the operatorŝg0 and ĝN are defined as in Eq. (4), pro-
vided thatgpN,ωq is replaced withgpN0, ωq andgNpN0, ωq,
respectively.

The evolution equation for the electric field coefficientEk

is obtained by inserting the expression of the field (14) in Eq.
(21) and by equating the coefficient of the termexpp´ikΩtq
at the two sides of the resulting equation. As a result, one
finds

dEk

dz
“

„

1

2
p1 ´ iαqΓgpN0, ωkq ´ αint ` iβpωkq



Ek

`1

2
p1 ´ iαq

ÿ

n

∆Nk´nΓgN pN0, ωnqEn ` rk,

(23)

where we used̂g0E “ ř

k gpN0, ωkqEk expp´ikΩtq and
ĝNE “ ř

k gNpN0, ωkqEk expp´ikΩtq, with ωk “ ω0 ` kΩ.
The noise termrk is defined by

rkpN ; zq “
ż

dteikΩtrsppN, t; zq, (24)

has zero meanxrkpN ; zqy “ 0, and its variance follows from

xr˚
k pN ; zqrhpN ; z1qy “ δpz ´ z1q~ω0

ˆ
ż

dt

ż

dt1 expriΩpkt1 ´ htqsR1
sppN, t1 ´ tq. (25)

Using the stationarity ofR1
sp, we may express the above as

xr˚
k pN ; zqrhpN ; z1qy “ δk,hδpz ´ z1q~ω0

ˆnsppN,ω0 ` kΩqΓgpN,ω0 ` kΩq. (26)

The termsrkpN ; z1q, k “ 0, ˘1, ˘2 . . . are therefore a
set of independent-phase, spatially-uncorrelated noise terms,
which can be modeled as differentials of independent Wiener
processes. At this point we can recast Eq. (23) in the following
compact form

d ~E

dz
“

„

1

2
p1 ´ iαqΓpG ` Hq ´ αintI ` ib



~E ` ~r, (27)

where ~E and ~r are column vectors constructed by stack-
ing the electric field coefficientsEk and the noise pro-
jections rk one on top of another, respectively, withE0

and r0 occupying the central position, namely~E “
r. . . E2, E1, E0, E´1, E´2 . . .st, and the same for~r (the
superscriptt stands for “transposed”). The vector~E and
~r are of course infinite-dimensional, and so are the square
matricesG, H andb. Consistently with the definition of~E,
we use positive and negative indices to identify the elements
of these matrices, with thep0, 0q element occupying the
central position. In particular,G andb are diagonal matrices
whose pk, kq elements are equal toGk,k “ gpN0, ωkq and
bk,k “ βpωkq´βpω0q´kΩdβpω0q{dω0, respectively, whereas
the pk, nq element ofH is Hk,n “ ∆Nk´ngNpN0, ωnq. By I

we denote the identity matrix (regardless of its dimensions).
We now proceed to the extraction of the carrier den-

sity coefficients∆Nk by equating the terms proportional to
expp´ikΩtq at the two sides of Eq. (22), when the expression
of ∆N in Eq. (15) is inserted in it. After some straightforward
algebra, involving the use of Eq. (16), one obtains

p1 ´ ikτΩq∆Nk “ ´
ÿ

h

∆Nhpk,h ` Nk. (28)
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where

Nk “ ´τpN0qRpN0qp1 ´ δk,0q

ˆ
ÿ

n

„ p1 ´ iαqEn`kE
˚
n

PstimpN0, ωn`kq ` p1 ` iαqEn`kE
˚
n

PstimpN0, ωnq



,(29)

pk,h “
ÿ

n

„ p1 ´ iαqEn`k´hE
˚
n

PsatpN0, ωn`k´hq ` p1 ` iαqEn`k´hE
˚
n

PsatpN0, ωnq



.

(30)
The quantity

PsatpN0, ωq “ ~ω0S

τpN0qΓgN pN0, ωq , (31)

is the familiar saturation power, although its definition ac-
counts for the frequency dependence of the gain coefficient
explicitly, and

PstimpN0, ωq “ RpN0q ~ω0S

ΓgpN0, ωq . (32)

is the power value above which carrier depletion is dominated
by stimulated emission. We hence refer toPstim as tostimu-
lated power. Equation (28) can be conveniently recast in the
following compact form

pI ´ iτΩk ` pq∆ ~N “ ~N (33)

where the pk, hq element of the matrixp is equal to
pk,h, and k is a diagonal matrix with diagonal elements
κk,k “ k. The column vectors∆ ~N and ~N are con-
structed (like the field vector~E) by stacking the coeffi-
cients ∆Nk and Nk one on top of another, respectively,
namely, ∆ ~N “ r. . . , ∆N1, ∆N0, ∆N´1, . . .st and ~N “
r. . . , N1, 0, N´1, . . .st. The coefficientsN0 and ∆Nk are
hence obtained for a given electric field state by solving
Eqs. (16) and (33). These are the most general coupled-mode
equations accounting for any functional dependence of the
recombination rate and material optical gain on carrier density,
as well as for the frequency dependence of the gain and
waveguide dispersion.

III. I MPLEMENTATION OF THE COUPLED-MODE EQUATION

MODEL IN REALISTIC SOA STRUCTURES

As is customarily done in most studies of practical rel-
evance, where the waveguide dispersion and the frequency
dependence of the gain coefficient have been shown to play a
minor role, in this section we neglect chromatic dispersion,
as well as higher-order dispersion, and assume frequency-
independent gain. With this simplification the matricesG,
H, andp become frequency-independent and assume a very
convenient form, as is shown in what follows. We also neglect
the presence of spontaneous emission noise terms, whose
implications on the SOA performance, chiefly on the SOA
noise figure, will be the subject of future work.

The multi-wavelength propagation model introduced in the
previous section involves an infinite number of coefficientsEk

and∆Nk, a situation that is obviously incompatible with its
implementation in any numerical platform. However, as will
be shown in the next section, high-order coefficients (namely
Ek and ∆Nk coefficients with large values of|k|) provide

a negligible contribution to the solution of Eqs. (16), (27),
and (33), and hence they can be omitted by truncating the
vectors ~E and ∆ ~N . The truncation of~E and ∆ ~N requires
of course that all matrices involved in Eqs. (27) and (33) be
also truncated accordingly. In what follows we provide explicit
expressions for those matrices and discuss the procedure that
allows the efficient computation of~E and∆ ~N .

The truncation procedure of the infinite set of equations
(27) can be performed in a number of ways. One possible
approach is assuming thatEkpzq “ 0 for |k| ą M . HereM
is an integer number that can be determined self consistently
by checking that the integration of the equations forM Ñ
M`1 yields indistinguishable results. This assumption implies
∆Nkpzq “ 0 for |k| ą 2M , owing to the absence of beat
terms at frequency offsets larger than2MΩ. A simpler yet
equally accurate approach is to assume that the carrier density
coefficients∆Nkpzq are also zero at frequency offsets greater
than MΩ. Here we adopt the latter approach, within which
Eqs. (14) and (15) specialize to

Epz, tq “
M
ÿ

k“´M

Ekpzqe´ikΩt (34)

Npz, tq “ N0pzq `
M
ÿ

k“´M

∆Nkpzqe´ikΩt. (35)

Accordingly, the field vector~E and carrier density modulation
vector ∆ ~N , consist ofp2M ` 1q components. MatricesG
andH in Eq. (27) becomep2M ` 1q ˆ p2M ` 1q matrices.
In particular, owing to the assumption of frequency-flat gain,
one can readily verify the equalitiesG “ gpN0qI, and
H “ gNpN0qTp∆ ~N q, where byT2M`1p∆Nkq we denote a
Hermitian-symmetric Toeplitz matrix [16]. Below we give the
expression ofT2M`1p∆Nkq in the caseM “ 2 for illustration
purposes,

T5p∆Nkq “

»

—

—

—

—

–

∆N0 ∆N1 ∆N2 0 0

∆N˚
1 ∆N0 ∆N1 ∆N2 0

∆N˚
2 ∆N˚

1 ∆N0 ∆N1 ∆N2

0 ∆N˚
2 ∆N˚

1 ∆N0 ∆N1

0 0 ∆N˚
2 ∆N˚

1 ∆N0

fi

ffi

ffi

ffi

ffi

fl

.

(36)
The neglect of the waveguide dispersion yieldsb “ 0, and
hence Eq. (27) simplifies to

d ~E

dz
“

„ p1 ´ iαqgpN0q ´ αint

2
I ` T2M`1p∆Nkq



~E, (37)

whereN0 is the solution of

J

ed
“ RpN0q

«

1 ` | ~E|2
τPstimpN0q

ff

, (38)

PstimpN0q “ RpN0q ~ω0S

ΓgpN0q . (39)

The expression for the carrier density modulation vector∆ ~N
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TABLE I
SOA PARAMETERS

Description Value Units

Linear recombination coefficientA 0 s´1

Bimolecular recombination coefficientB 0.3 ˆ 10´10 cm3{s
Auger coefficientC 3.3 ˆ 10´29 cm6{s
Optical confinement factorΓ 10%
Linewidth enhancement factorα 5
Optical wavelengthλ0 1561 nm
Group velocityvg 8.33 ¨ 109 cm/s
Active region widthwa 2ˆ10´4 cm
Active region ticknessd 65̂ 10´7 cm
Active region lengthL 0.1 cm
Gain coefficientg0 1800 cm´1

Transparency carrier densityNtr 2ˆ1018 cm´3

SOA internal lossαint 5 cm´1

Injection current densityJ 3.4̂ 103 A{cm2

Frequency spacingΩ{2π 8.6 GHz

simplifies to

∆ ~N “ ´ τRpN0q
PstimpN0q

„

I ´ τΩk ` T2M`1pCkq
PsatpN0q

´1

~C

(40)

PsatpN0q “ ~ω0S

τpN0qΓgN pN0q (41)

whereCk is the discrete autocorrelation function of~E, namely

Ck “
M
ÿ

n“´M

En`kE
˚
n , (42)

where we assumeEn “ 0 for |n| ą M . The expression of~C
in the caseM “ 2 is

~C “ rC2, C1, C0, C
˚
1 , C

˚
2 st, (43)

and that ofT5pCkq is

T5pCkq “

»

—

—

—

—

–

C0 C1 C2 C3 C4

C˚
1 C0 C1 C2 C3

C˚
2 C˚

1 C0 C1 C2

C˚
1 C˚

2 C˚
1 C0 C1

C˚
2 C˚

1 C˚
2 C˚

1 C0

fi

ffi

ffi

ffi

ffi

fl

, (44)

where we usedC´k “ C˚
k , as can be readily verified by

inspecting Eq. (42).
The numerical integration of the coupled-equations involves

a three-step procedure for the transition fromz to z`∆z, given
the field vector~Epzq. These are:

1) Find the value ofN0pzq by solving Eq. (38);
2) Extract the carrier density vector∆ ~Npzq as in Eq. (40);
3) Evaluate the field vector~Epz`∆zq by solving Eq. (37)

from z to z`∆z while using the values ofN0 and∆Nk

obtained in steps 1 and 2, according to

~Epz ` ∆zq “ exp

" p1 ´ iαqgrN0pzqs ´ αint

2
∆z

*

exp tT2M`1r∆Nkpzqs∆zu ~Epzq (45)

A. Model validation

In this section we test the accuracy of the proposed multi-
wavelength propagation model against the results obtained
by integrating the full model’ space-time equations (3) and
(13). To this end we consider a QW SOA, characterized by
the following logarithmic functional dependence of the gain
coefficient on carrier density [6]

gpNq “ g0 log

ˆ

N

Ntr

˙

, (46)

whereg0 is a gain parameter andNtr is the carrier density
required for transparency.4 The expansion of the gain function
is in this casegpNq » gpN0q ` gNpN0q∆N , with

gpN0q “ g0 log

ˆ

N0

Ntr

˙

, gNpN0q “ g0

N0

. (47)

The physical and operational parameters of the SOA are
listed in Table I (we note that the SOA is operated with the
injection current densityJ “ 8.5Jtr, whereJtr “ edpANtr `
BN2

tr ` CN3
trq is the injection current density required for

transparency). The SOA is injected with a three-wavelength
optical signal characterized by the complex envelope

Einptq “
a

W1 e
´iΩt `

a

W0 `
a

W´1 e
iΩt (48)

with W1 “ W´1 “ ´2dBm, and W0 “ ´7dBm. For
this set of parameters we solved the coupled-mode equa-
tions (37), (39), and (40) with the input field vector~Ein “
r¨ ¨ ¨ 0,

?
W1,

?
W0,

a

W´1, 0 ¨ ¨ ¨ st. We usedM “ 6 and
checked that larger values ofM yield indistinguishable results.
We then integrated the full model’s equations (3) and (13) with
the procedure described in [17], and extracted the coefficients
Ekpzq from the numerical solutionEnumpz, tq according to

Ekpzq Ø Ω

2π

ż 2π{Ω

t0

Enumpz, tqeikΩtdt, (49)

where byt0 we denote any time at which the system achieved
its stationary state. The results are shown in Fig. 1. In the
top panel we plot by solid curves the intensities of the
coefficientsEkpzq versus the normalized propagation distance
z{L for values ofk ranging betweenk “ ´4 and k “ 4.
By circles we plot the results obtained with the full model.
The excellent accuracy of the coupled-mode model is self-
evident. Interestingly, the figure shows that the coupled-
mode model is accurate in describing the formation of four-
wave mixing components that eventually (at the SOA output)
exceed some of the input components. The lower panel of
the same figure shows the corresponding phases of the field
coefficientsEk (more precisely the solid curves are the plot
of Phase rEkpzqs ` kΩz{vg, where the second term accounts
for the fact that the coefficientsEkpzq characterize the field
envelope in the time reference delayed byz{vg).

In Fig. 2 we illustrate the dependence of the coupled-mode
model’s results on the number of field coefficients that are
considered. In the top panel we plot the output intensities

4Of course, the use of different functional forms ofgpNq, for instance the
more accurate three parameter expressiongpNq “ g0 lnrpN ` Nsq{pNtr `
Nsqs also reported in [6], is fully equivalent in terms of model complexity.
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Fig. 1. Intensity (top panel) and phase (bottom panel) of thefield components
Ek versus normalized propagation distancez{L for the displayed values of
k and for the SOA parameters’ values in Table I. Solid curves refer to the
coupled-mode model, while circles were obtained by solvingthe space-time
equations of the full model.

|EkpLq|2 evaluated by solving the coupled-mode equations for
increasing values ofM , with each curve corresponding to a
different value ofk. Since the accounting for the frequency
componentEk dictates thatM ě |k|, the curve referring
to Ek originates atM “ |k|. The plot shows that in the
numerical example considered here the results of the coupled-
mode equations for the componentEk become accurate (that
is, the corresponding curve in the figure becomes flat) forM

exceeding|k| by a one or two units. However, it should be
pointed out that the convergence to the correct result is affected
by the specific SOA parameters’ value and may be slower. This
is shown in the lower panel of the Fig. 2, where the same
curves plotted in the top panel are re-calculated by increasing
the SOA optical confinement factor from 10% to 20% and by
leaving the other SOA parameters unchanged. In this example,
it can be seen that usingM ă 6 may yield an error in the
calculation of|E1pLq|2 up to a factor of 100.

IV. A PPLICATION OF THE MODEL: DUAL -PUMPED

SOA-BASED PHASE-SENSITIVE AMPLIFIER

In this section we apply the coupled-mode model to the
study of the dual-pumped SOA-based PSA presented in [11],
[12]. The goal of this exercise is two-folded. On the one
hand we aim to show that the phase-sensitive gain value
obtained with the coupled-mode model assuming realistic
SOA parameters is consistent with the experimentally obtained
value. On the other hand, we show explicitly that by restricting
the coupled-mode model to the pump and signal components
only, as is sometimes done [18], yields significantly incorrect
results when a realistic dependence of the amplifier gain on
carrier density is used.

The waveform at the input of a PSA of the kind considered
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Fig. 2. Intensities of field componentsEk at the SOA output|EkpLq|2, as
obtained by using the coupled-mode model, for increasing values ofM . Each
curve corresponds to a specific value ofk and hence it originates at|k| “ M .
The top panel refers to the set of parameters listed in Table Iand used in Fig.
1, whereas in the bottom panel the optical confinement factorwas increased
from 10% to 20%.

here can be expressed as

Einptq “ eiφ1

a

W1e
´iΩt ` eiφ0

a

W0 ` eiφ´1

a

W´1e
iΩt

(50)
where byW1 andW´1 we denote the optical powers of the
two pumps and byφ1 andφ´1 their absolute phases. The field
component at the central frequency represent the input signal
component. By removing in all components the immaterial
average phase of the two pumpsφc “ pφ1 ` φ´1q{2, and
denoting byφs “ φ0 ´ φc the input signal phase relative to
φc, the input field envelope can be expressed as

Einptq “ eiφp

a

W1e
´iΩt ` eiφs

a

W0 ` e´iφp

a

W´1e
iΩt,

(51)
whereφp “ pφ1´φ´1q{2. We further note that the effect ofφp

is limited to introducing an immaterial time shifttp “ φp{Ω,
and hence it can be safely set toφp “ 0. We therefore solve
the space-time equations using the following input waveform,

Einptq “
a

WP1
e´iΩt ` eiφs

a

Ws `
a

WP2
eiΩt, (52)

and the coupled-mode equations with the input field vector

~Ein “ r¨ ¨ ¨ , 0
a

WP1
, eiφs

a

Ws,
a

WP2
, 0, ¨ ¨ ¨ st. (53)

The key quantity that characterizes the performance of the
PSA under scrutiny is the dependence of the signal gain on the
phaseφs. In Fig. (3) we plot the gainGspφsq “ |EspLq|2{Ws

(in decibels) as a function ofφs, where in the case of the
full model the termEspLq is extracted from the numerical
solutionEnumpL, tq according to Eq. (49) withz “ L. The
SOA parameters used in the numerical example are those given
in Table I. The input pump powers were set toWP1

“ WP2
“

´2dBm, and the input signal power to the much smaller value
Ws “ ´22dBm. The solid curve is obtained by integrating the
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Fig. 3. Dual-pumped SOA-based PSA’s gain versus the relative phase of
the input signalφs introduced in Eq. (52). The SOA parameters used in the
numerical computation are those given in Table I, the input pump powers
were set toWP1

“ WP2
“ ´2dBm, and the input signal power toWs “

´22dBm. The solid curve refers to the coupled-mode model withM “ 4

(larger values ofM yield indistinguishable results), while the circles were
obtained by integrating the space-time equations of the full model. The dashed
curve shows the results obtained with the coupled-mode model by propagating
only the pump and signal components, namely by settingM “ 1.

coupled-mode model withM “ 4, whereas the circles refer
to the space-time model. The excellent agreement between
the coupled-mode model and the space-time model, like in
the previous section, is self-evident. The thin dashed curve in
Fig. 3 shows the result obtained with the coupled-mode model
by including only the pump and signal field components, that
is by usingM “ 1. The plot shows that the neglect of high-
order four-wave mixing products yields higher gain values and
a lower phase dependent gain.

Figure 4 depicts the schematic of the signal-degenerate dual
pump PSA used in the experiment [11], [12]. The coherent
incident light waves, which consist of two pumps and one
signal, are here generated based on external modulation and
then are coupled into a PSA chip. On the chip, the input
light waves are split into three paths via a 1 by 3 multimode
interference (MMI) coupler. Along the upper and lower paths,
there are two tunable Sampled-Grating Distributed-Bragg-
Reflector (SG-DBR) lasers [19], each of which is injection
locked by opposite modulation side-band pumps. Therefore,
each SG-DBR laser selectively amplifies the corresponding
pump and suppresses the other one as well as the signal.
Signal suppression due to injection locking is necessary to
avoid on-chip signal-interference-induced signal power change
which otherwise could be misinterpreted as the result of PSA.
After further being amplified by a downstream SOA, the pump
is filtered by an asymmetric Mach-Zehnder interferometer
(AMZI) to remove the residual signal and the noise falling in
the signal’s spectrum, which avoids signal interference among
three paths and enables the signal to be shot-noise limited.

Along the middle path, there is a phase tuner to phase
shift the signal based on carrier plasma effects; therefore,
the adjustable and stable phase relationship among the signal
and two pumps can be achieved for observing the PSA-based
signal power variation as a function of the signal’s phase.
Please note that, although there are two pumps along the
middle path, their powers are much smaller than those along
the other two paths so that the pump waves along the middle

AMZI

1SOA1

SOA2 AMZI

2

SG-DBR1

SG-DBR2

1:3
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3:3

MMI NL-SOA

Ref. (passive wg)
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!"#$%&''

Mask layout  (InP/InGaAsP) 
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Fig. 4. Schematic of the signal-degenerate dual-pumped PSAand mask
layout.

path and the pump wave interference are negligible. The light
waves along three paths are combined together and split again
by a 3-by-3 MMI coupler to a nonlinear-SOA (NL-SOA)
where phase-sensitive amplification occurs, a long passive
waveguide (WG) as a reference port, and a tap to monitor
the input light waves to the NL-SOA.

In the experiment, the total input power to the NL-SOA was
about ´1dBm, which was high enough to saturate the NL-
SOA because the NL-SOA started saturation at´9dBm input
power. Once the SOA was saturated, the spontaneous emission
noise and PIA were suppressed. The injection current to the
NL-SOA was set to be 90 mA.

To specifically demonstrate and evaluate the PSA, the
measured signal power at the output of the SOA with respect
to the square root of the phase tuner current was measured,
which is shown in Fig. 5. The abscissa variable is set to be the
square root of the phase tuner current because the signal power
after PSA varies with the signal phase, which is known to vary
linearly with the square root of the phase tuner current. For
comparison, the signal power without injection locking and
the relative phase change of the signal were measured, which
are shown in Fig. 5 as well. The relative phase of the signal
was obtained by using a vector network analyzer to compare
the phase of the beat note between the signal and one sideband
and the phase of the RF signal applied to the external intensity
modulator. The beat note was generated by heterodyning the
signal and only one pump wave at the output of the tap port
at a photodetector. The other pump wave was suppressed by
turning off the corresponding SG-DBR laser.

As can be seen from 5, when injection locking was inactive
and two lasers were in free-running modes, there was no PSA
due to random phase drifting among the pumps and the signal
waves. Once the injection locking was enabled, however, there
was no obvious PSA or phase change of the signal until after
the current was larger than 1 mA. Such a delay in phase
shift commonly occurs in tunable SG-DBR lasers and could
be caused by an N+ sheet charge that exists at the regrowth
interface due to surface contamination. As the current was
further increased, these traps are filled and phase-dependent
signal gain appeared. Overall, one square root of the current
gives oneπ phase shift to the signal and one period oscillation



JOURNAL OF LIGHTWAVE TECHNOLOGY 9

!"#$%&#'"()*+#"%(,-%+."(/

!"#

!"$

!"%

!&'

!&(

!&)

!&*

!&+

,
-.
/
0
12
3
4
5
6
72
89
:
;
<

% %=# %=" %=* %=( $ $=# $=" $=* $=( #

,>?0762744@24A2B?776/@28;CD%=+<

E
6
10
@-F
6
2G
-.
/
0
123
H
0
G
6
28I
J70
9
<

!$=*

!$=#

!%=(

!%="

%

%="

%=(

!#=%

!

!"#$%"&'()#"*&+,*)-"&.

!"#$%&'%#()*&+,

-./01

Fig. 5. Measured relationship among the signal power, the signal phase and
the square root of the current applied to the phase tuner (seerefs. [12], [12]).

to the signal. Clearly, such a signal power oscillation overone
π instead of2π phase indicates that the signal power change
was caused by the PSA instead of the signal interference. The
measured signal power curve shows that approximate 6.3 dB
extinction of phase-sensitive on-chip gain was achieved. This
value is in full agreement with the results of the coupled-mode
model shown in Fig. 3. The linear gain that the model predicts
for the simulated device is about 60dB, which is also consistent
with the measured value of about 50dB [12], where the 10dB
difference can be attributed to gain compression induced by
ASE and to thermal effects within the waveguide. The values
of g0 and of the coefficientsA, B and C has been chosen
as the typical parameters for the InP/InGaAsP MQW active
region of the SOA used in the experiment [6]. These values
have been shown to reproduce the measured static gain-current
characteristic of the NL-SOA under test.

V. CONCLUSIONS

To conclude, we derived a couple-mode model for multi-
wave mixing in SOAs characterized by arbitrary functional
dependencies of the recombination rate and material gain on
carrier density. The model takes into account the frequency
dependence of the material gain, as well as all orders of
the waveguide dispersion, and accommodates input fields
consisting of arbitrary combinations of multiple frequency
components. We showed that the conventional approach as-
suming a limited number of generated four-wave mixing
components gives inaccurate results when two waveforms of
similar intensities are injected into the SOA. In this case,our
model gives highly accurate results if a sufficient number of
generated components are taken into account, as we showed
by direct comparison with full time-domain simulations. We
applied the coupled-mode model to studying the operation
of a recently demonstrated dual-pumped PSA based on an
integrated QW SOA [11], and showed that the outcome of the
model is consistent with the experimental results.

ACKNOWLEDGEMENT

Work funded by DARPA through project W911NF-14-1-
0249. C. Antonelli and A. Mecozzi also acknowledge financial
support from the Italian Ministry of University and Research
through ROAD-NGN project (PRIN 2010-2011), and under
Cipe resolution n. 135 (Dec. 21, 2012), project INnovating

City Planning through Information and Communication Tech-
nologies (INCIPICT).

REFERENCES

[1] M. J. Connelly, “Wide-Band Steady-State Numerical Model and Pa-
rameter Extraction of a Tensile-Strained Bulk Semiconductor Optical
Amplifier,” IEEE J. Quantum Electron., vol.43, pp. 47–56, 2007.

[2] A. R. Totović, J. V. Crnjanski, M. M. Krstić, and D. M. Gvozdić, “Nu-
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