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Abstract—We design and experimentally demonstrate two chip-
scale and agile heterodyne optical phase-locked loops (OPLLs)
based on two types of InP-based photonic-integrated coherent re-
ceiver circuits. The system performance of the first-generation
OPLL was improved in terms of offset-locking range, and power
consumption with the use of a power efficient and compact
photonic-integrated circuit (PIC). The second-generation PIC con-
sists of a 60-nm widely tunable Y-branch laser as a local oscillator
with a 2 × 2 multimode interference (MMI) coupler and a pair of
balanced photodetectors. This PIC consumes only 184-mW power
in full operation, which is a factor of 3 less compared to the first-
generation PIC. In addition, the sensitivity of these OPLLs was
experimentally measured to be as low as 20 µw. A possible solution
to increase the sensitivity of these OPLLs is also suggested.

Index Terms—Heterodyne, integrated optics, optical phase-
locked loop, photonic integrated circuits.

I. INTRODUCTION

O PTICAL phase-locked loops (OPLLs) have been of great
interest for the last couple of decades due to the promis-

ing applications in the areas of communications, sensing and
frequency control [1], [2]. These applications include short
to medium range coherent optical communications [3], laser
linewidth narrowing [4]–[6], terahertz signal generation [6], [7]
and optical frequency synthesis [8]–[11]. With the improve-
ments in the photonic integration, OPLLs became more attrac-
tive since they can offer small loop delay, which allows having
OPLLs with loop bandwidths as large as 1.1 GHz [3]. However,
these prior OPLLs consume almost 3 Watts of electrical power
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[3]. This high-power consumption makes the use of OPLLs in
practical applications questionable.

Therefore, realizing a low-power consumption OPLL is im-
portant to take advantage of recent advances in photonic integra-
tion. A chip-scale, compact, low power consumption OPLL can
push the technology in the aforementioned application areas
further forward. With the proper design of compact photonic
integrated circuits (PICs), power consumption in such PICs,
therefore OPLLs, can be lowered [12]. In this work, two chip-
scale, highly-integrated OPLLs are designed and experimentally
demonstrated using two different InP-based photonic integrated
coherent receiver circuits.

After successfully achieving OPLLs with a reasonable offset
locking range and low-power consumption, a detailed sensitiv-
ity analysis and some relevant experiments were performed. A
minimum input optical power to demonstrate the phase-locking
using our OPLLs was measured as 20 μw both theoretically
and experimentally. A novel solution is proposed that can be
implemented in such OPLLs in order to lock input power levels
as low as nanowatts.

This paper is organized as follows. This paper begins with a
short summary of OPLL system design together with the PIC
design. We then present the experimental results for the first, and
second generation OPLL. After this, the power budget for both
OPLLs is given. Finally, the sensitivity analysis and a proposed
solution for high sensitivity OPLL is provided.

II. OPTICAL PHASE-LOCKED LOOP SYSTEM DESIGN

A. PIC Design

Since two different types of PICs are used in this study for
demonstrating heterodyne OPLLs, we have named them as gen-
1 and gen-2 PICs for clarity. All active/passive components in
these PICs are monolithically integrated on an InGaAsP/InP
material platform. Details of the fabrication of such PICs can be
found in [13], [14]. Microscope images of both PICs are shown
in Fig. 1(a) and (b).

Out of two PICs, gen-1 PIC (see Fig. 1(a)) consists of
40 nm widely-tunable sampled-grating distributed-Bragg-
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Fig. 1. (a) Microscope image of the gen-1 InP based PIC. (b) Microscope
image of low power consumption gen-2 InP based PIC. (BM: back mirror,
FM: front mirror, PD: photodiode, PT: phase tuner, SG-DBR: sampled-grating
distributed-Bragg-reflector, and SOA: semiconductor optical amplifier.)

Fig. 2. OPLL system under measurement setup integrated on an AlN carrier
including gen-1 PIC and control electronics.

reflector (SG-DBR) laser, 2 × 2 multimode interference (MMI)
coupler, a balanced photodetector pair and a couple of semi-
conductor optical amplifiers (SOAs) on reference and local-
oscillator (LO) optical paths. Reference optical signal was
coupled into this PIC using the upper arm and amplified by
two SOAs. SG-DBR laser output propagated in the lower arm.
These two optical signals were combined in a 2 × 2 MMI cou-
pler and mixed in a balanced photodetector pair to produce the
beat note for the electronics part. The SG-DBR laser also has a
second output from its backside for monitoring purposes.

Gen-2 PIC (see Fig. 1(b)) was designed for low power con-
sumption. This PIC incorporates a widely tunable, compact
Y-branch laser, formed between a high-reflectivity coated back
cleaved mirror and a pair of Vernier tuned sampled-grating front
mirrors, as well as a 2× 2 MMI coupler and a balanced photode-
tector pair. The optical output from one of the front mirrors was
connected to the MMI coupler, while the other output from an-
other front mirror was used externally for monitoring the OPLL
operation. The Y-branch laser has a compact cavity with short
gain and mirror sections, requiring low current and therefore
low drive power. It is tuned via Vernier effect and has been de-
signed for high efficiency at 30 °C. The measured tuning range
exceeds 60 nm with >50 dB side-mode suppression ratio [15].

B. Feedback Electronics Design and OPLL Assembly

Both OPLLs use SiGe (Silicon Germanium) based
commercial-off-the-shelf (COTS) electronic ICs and loop filters
built from discrete components as the control electronics. Fig. 2
shows an exemplary OPLL system assembled by mounting gen-
1 PIC and electronic components on a patterned AlN carrier.

Fig. 3. (a) Circuit diagram of the first generation OPLL including gen-1 PIC in
yellow and the control electronics. (b) Circuit diagram of the second generation
OPLL including gen-2 PIC in yellow, and the control electronics. (BM: back
mirror, FM: front mirror, PD: photodiode, PT: phase tuner, SG-DBR: sampled-
grating distributed-Bragg-reflector, SOA: semiconductor optical amplifier.)

In this study, both OPLLs are designed to be heterodyne-type,
which takes input offset frequency from external RF synthesizer
and locks LO laser to the reference oscillator at this offset fre-
quency. The second order loop filter with fast feedforward path
was used in feedback electronics in order to get a high loop
bandwidth. The circuit schematics of both OPLL systems can
be seen in Fig. 3(a) and (b).

A limiting amplifier with 30 dB differential gain and 17 GHz
3-dB bandwidth, and a digital XOR gate functioning as a phase
detector [16], together with an op-amp-based loop filter were
used in the feedback electronics. The on-chip LO laser of the
PIC was mixed via the external reference laser through the 2× 2
MMI coupler and the PD pair to produce the beat note. This beat
note then feeds the electronic ICs. First, it is amplified to logic
levels through limiting amplifier and then mixed via external RF
frequency synthesizer in order to produce an error signal. This
error signal goes through the loop filter and feeds back to the
phase-tuning section (PT) of on-chip LO laser. With sufficient
feedback gain, this error signal becomes zero and LO laser is
locked to external reference laser at a given RF offset frequency.

Open loop transfer function of an OPLL can be written as a
product of gain, and the time constants of the loop [17]. There-
fore, open loop transfer function of both OPLLs in this work
can be expressed as follows:

T (s) = KPDKCCO
1

(τlasers + 1)
e−τd s

×
(

τ2s + 1
τ1s

1/Rout

τops + 1
e−τd o p s +

CFF

2

)

where KPD is the phase detection gain, KCCO is the laser tun-
ing sensitivity, τlaser is the laser tuning frequency responsivity,
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Fig. 4. Experimental setup for the first generation OPLL system. (ECL: ex-
ternal cavity laser, ESA: electrical spectrum analyzer, OSA: optical spectrum
analyzer, PC: polarization controller, ISO: isolator.)

Fig. 5. (a) OSA spectrum when SGDBR is offset locked to the reference
laser at 6 GHz offset, which corresponds 0.05 nm separation in optical domain.
(b) Corresponding ESA spectrum when SGDBR is offset locked to the reference
laser at 6 GHz offset, blue is before locking and red is after locking.

τ1 is the loop filter pole, τ2 is the loop filter zero, τOP is the
op-amp parasitic pole, Rout is the voltage to current conversion
resistance at the output, CFF is the feed-forward capacitor and
τdop is the op-amp delay, and τd is the total loop delay. Here
KPD is a constant value (2 ∗ Vlogic/π) due to the limiting ampli-
fier, which makes the system loop bandwidth insensitive to the
optical power level variations. This loop was designed to have
a safe phase margin of around 50–60° at unity gain crossover
frequency for both OPLLs in order to realize a robust and stable
system.

III. FIRST GENERATION OPLL EXPERIMENTAL RESULTS

The experimental setup, as shown in Fig. 4, was used in order
to demonstrate the offset locking with the OPLL using the gen-1
PIC. The reference external cavity laser (ECL) was coupled into
the PIC using lensed fiber from the back side of the PIC. It was
then combined with the tunable on-chip SG-DBR laser output
in the MMI coupler and mixed to form the desired beat note in
the PDs. Light from the SG-DBR laser was coupled out from the
lower arm for monitoring purposes. The superimposed optical
spectra of the reference laser together with on chip SG-DBR
laser were measured by an optical spectrum analyzer (OSA).
At the same time, the resulting RF beat-note was measured by
an electrical spectrum analyzer (ESA) through a high speed
photodiode.

This experiment shows offset-phase locking between the on
chip SG-DBR laser and the external cavity laser (ECL) as the
reference. ECL used in this study has the optical linewidth of
100 kHz. Fig. 5(a) demonstrates the optical spectrum when the
reference laser and the on chip SG-DBR are offset locked at

Fig. 6. ESA spectrum when SG-DBR is offset locked to the reference laser
at 4.4 GHz offset. In this case, ECL and SG-DBR are decorrelated using a long
fiber. Therefore, relative linewidth of the beat note is equal to 100 kHz, which
is the linewidth of the ECL (reference laser).

Fig. 7. Offset locking at multiple frequencies with the first generation OPLL
at a RBW of 3 MHz.

6 GHz, which is determined by the RF frequency synthesizer.
As can be seen in the figure, the separation between the two
peaks are about 0.05 nm, which corresponds to 6 GHz frequency
separation. In Fig. 5(b), the RF beat-note of the reference laser
and the on chip SG-DBR laser is presented both in locked and
unlocked cases. The relative linewidth of the locked beat note
at 6 GHz is in the order of sub-Hz, which is limited by the
resolution bandwidth of the ESA. It should be noted that the
optical linewidth of our free-running on-chip laser is 10 MHz.

In order to measure the absolute linewidth of the locked beat
note, the measurement was performed after adding 20 km of
fiber between the upper and lower external 2 × 2 couplers to
decorrelate the ECL from the SG-DBR. In this case, one would
expect to get a linewidth of the RF beat note equal to the optical
linewidth of the ECL. Fig. 6 demonstrates this result. On chip
SG-DBR is offset locked at 4.4 GHz, but this time long fiber is
added to decorrelate the ECL from the SG-DBR. In this case,
the absolute linewidth of the locked beat tone was measured as
100 kHz, indicating the linewidth cloning of the SG-DBR to the
ECL.

After proving the phase locking, the offset-locking range was
demonstrated for different offset frequencies from 1.14 GHz up
to 15.2 GHz as can be seen in Fig. 7. The higher the offset
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Fig. 8. (a) OSA spectrum when on chip Y-branch laser is offset locked to
the reference laser at 8.6 GHz offset, which corresponds 0.07 nm separation in
optical domain. (b) Corresponding ESA spectrum when Y-branch laser is offset
locked to the reference laser at 8.6 GHz offset.

locking range, the easier it became for the OPLL to track the
reference signal over a broad range of frequencies [18], [19].

IV. SECOND GENERATION OPLL EXPERIMENTAL RESULTS

Similar to the first generation OPLL, the experimental setup
shown in Fig. 4 was used to demonstrate phase locking for the
second generation OPLL. In this case, gen-1 PIC was replaced
with the gen-2 PIC.

This experiment demonstrates phase locking between the on-
chip Y-branch laser and the reference laser. Fig. 8(a) shows
the optical spectrum when the reference laser and the on chip
Y-branch laser are offset locked at 8.6 GHz, which is determined
by the RF frequency synthesizer. As can be seen in the figure,
the separation between the two peaks are about 0.07 nm, which
corresponds to 8.6 GHz frequency separation. In Fig. 8(b),
the RF beat-note between the reference laser and the on chip
Y-branch laser is displayed both before the locking and after
the locking. The relative linewidth of the locked beat note at
8.6 GHz is in the order of sub-Hz, which is limited by the
resolution bandwidth of the ESA. The beat note has a relative
linewidth in the order of a MHz before the locking, which is the
unlocked Y-branch laser’s linewidth [12].

With similar arguments presented for the first generation
OPLL, one can add a long enough fiber at the output between
the upper and lower external 2 × 2 couplers to decorrelate the
ECL from the Y-branch laser and measure the actual linewidth
of the beat note, which is equal to the linewidth of the ECL
∼100 kHz.

As the next experiment, several offset frequencies from
1 GHz to 20 GHz were applied from the RF frequency synthe-
sizer, and the same phase locking experiment was performed.
Fig. 9 presents offset locking at several offset frequencies rang-
ing from 1.6 GHz to 17.8 GHz.

In addition to the phase locking experiments, the residual
phase noise spectral density of the OPLL system was measured
when on chip local oscillator is offset locked to the reference
laser. Since the loop parameters and order were not changed
from the OPLL with gen-1 PIC to the gen-2 based OPLL, we
only provide phase noise spectrum of the former one. Fig. 10
shows phase noise spectrum when on chip SG-DBR laser is
offset locked to reference ECL at 2.5 GHz. This figure also
demonstrates the ESA background and RF synthesizer phase

Fig. 9. Offset locking at multiple frequencies with the second generation
OPLL at a RBW of 3 MHz.

Fig. 10. Single-sideband residual phase noise of the heterodyne OPLL at
2.5 GHz offset locking. Phase noise results of the RF synthesizer at 2.5 GHz,
and background is also shown here.

noise spectrum at 2.5 GHz. The phase noise variance is calcu-
lated to be 0.067 rad2 from 1 kHz to 10 GHz offset interval. This
corresponds to 14.8° standard deviation from the locking point.
This OPLL achieves −100 dBc/Hz phase noise at an offset of
5 kHz. These results are comparable with the state of the art
results in [20], [21].

For our OPLL system, the time domain equivalent of the
phase error variance is equal to the timing jitter in the frequency
range from 1 kHz to 10 GHz [22], which can be calculated as:

Jitter =
√

0.067
2π × 2.5 × 109 = 16.48 ps

This study is a proof-of-principle demonstration of optical
phase locking to a reference laser with low power consumption.
This system can be integrated with a better reference sources
such as microresonator based optical frequency combs to syn-
thesize arbitrary pure optical frequencies [10], [15]. Also, such
narrow RF beat tones generated by beating on-chip laser with
the comb lines can be used in a wide range of applications, in-
cluding short to medium range optical communications, as well
as broadband wireless communication in microwave photonic
link technology.
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TABLE I
POWER BUDGET FOR FIRST GENERATION PIC PROVIDING 10 MW OPTICAL

POWER AND OVERALL OPLL SYSTEM

TABLE II
POWER BUDGET FOR SECOND GENERATION PIC PROVIDING 10 MW OPTICAL

POWER AND OVERALL OPLL SYSTEM

V. POWER BUDGET OF BOTH OPLLS

As mentioned, one of the primary objectives for this work was
to realize a compact, chip-scale OPLL with Watt-level power
consumption. In order to do this, one can improve the control
electronics, PIC or both. In this work we proposed a novel,
compact, low power consumption PIC as a possible solution to
realize a chip scale, a Watt level OPLL. Tables I and II pro-
vides the power consumption of gen-1 PIC, gen-2 PIC, control
electronics and overall OPLL systems. (Numbers in the paren-
theses for each section in the PIC part tell how many of them
are integrated in the PIC, BM: back mirror, FM: front mirror,
LIA: limiting amplifier, PD: photodiode, PT: phase tuner, SOA:
semiconductor optical amplifier)

As can be seen from these tables gen-1 PIC consumes
660 mW, whereas gen-2 PIC consumes only 184 mW. Together

with the control electronics, the OPLL with gen-2 PIC only
consumes record-low 1.3 Watts of electrical power.

VI. SENSITIVITY OF THE OPLL SYSTEM

For practical applications including coherent optical commu-
nications and optical frequency synthesis, OPLLs should be able
to lock to input reference power levels in the order of μWs or
even 10s of nWs. In this section, sensitivity analysis of the OPLL
is given and experimental sensitivity results are reported. In ad-
dition to these results, a novel high gain transimpedance am-
plifier (TIA) is presented and possible OPLL is proposed using
this TIA, which can lock to input power levels as low as 25 pW.

Both OPLLs in this work employs SiGe based COTS
limiting amplifier, which has 30 dB differential gain. InP-based
PICs have on chip tunable lasers, which produces reasonable
amount of optical power. This is mixed with the reference
input power through 2 × 2 MMI coupler and the PDs. The
detected electrical signal is then fed into the limiting amplifier
having a 50 Ω common mode logic interface. In this system,
the minimum required input current level from the balanced
PD pair can be found as follows, where VINPUT ,MIN represents
the minimum required voltage level just before the limiting
amplifier and IBEAT ,MIN represents the minimum required
beat current produced by the photodiodes:

GainLIA = 30 dB = 31.6
VINPUT ,MIN = 300 mV

31.6 = 9.5 mV
IBEAT ,MIN = 9.5 mV

50 = 0.19 mA

From the above equations, we found out that the minimum
input current level for offset locking with the designed OPLLs
is around 0.19 mA. Given the responsivity of the on-chip PDs
is around 1 A/W, the minimum input beat power is around
0.19 mW. If we use this in the coherent detection equation,
we can get the minimum required input power level from the
reference laser as follows, where IBEAT represents the beat
current produced by the PDs, ILO is the current produced by
LO laser and IINPUT is the current produced by the reference
laser.

IBEAT = 2
√

ILO IINPUT

IINPUT ,MIN = IB E AT , M IN
2

4IL O

IINPUT ,MIN = 9 μA

Therefore, the minimum input power required to offset lock
this OPLL is theoretically about 9 μW, which is close to the
experimental results demonstrated in Fig. 11(b), in which the
minimum input power level required to operate the OPLL sys-
tem was found to be 20 μW.

Fig. 11(a) and (b) demonstrates the pull-in range of the
OPLL system with respect to offset locking frequency and input
power levels respectively. Pull-in range varies from 1.4 GHz to
200 MHz depending on the offset frequency range. As expected,
the pull-in range decreases with increasing offset frequencies,
since the gain of the overall loop reduces. Similarly, decreasing
input power levels reduces the pull-in range, and eventually at
some point OPLL stops working with the certain input power
levels. This minimum input power level was found to be 20 μW,
as can be seen in Fig. 11(b).
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Fig. 11. (a) Pull-in range vs. offset locking frequency. (b) Pull in range vs. in-
put power of the reference external cavity laser. Minimum input power required
for locking was found 20 μW experimentally.

In order to improve the sensitivity of the OPLL further, an
application specific transimpedance amplifier (TIA) with low
noise, high gain and wide bandwidth using 130 nm SiGe HBT
(Silicon Germanium Heterojunction Bipolar Transistor) process
was designed. This chip was designed for 80 dB voltage gain
and 120 dB-ohm transimpedance gain with 30 GHz 3-dB band-
width. It has less than 10 pA/

√
Hz input referred noise current

density up to 20 GHz with respect to 50 fF photodiode capac-
itance according to the circuit level simulations. With this TIA
minimum input power level of reference signal can be reduced
to as low as 22.5 pW as follows, where each symbol is used the
same way as explained previously:

GainTIA = 120 dBΩ = 1 MΩ
IBEAT ,MIN = 300mV

106 Ω = 0.3 μA
IBEAT = 2

√
ILO IINPUT

IINPUT ,MIN = IB E AT , M IN
2

4IL O

IINPUT ,MIN = 22.5 pA

Using this TIA, one can make a highly sensitive OPLL, which
can be used in optical communications and optical frequency
synthesis systems. Fig. 12 shows the proposed OPLL system
using this novel TIA. The COTS SiGe limiting amplifier is
replaced by this TIA in the proposed OPLL system. Please note
that TIA gain was measured functionally to be 60 dB without
DC restoration loop. With a proper DC restoration loop, one can
get the simulated gain of 80 dB from the TIA. The study relating
to the sensitive OPLL system with these high-performance TIAs
is ongoing and will be reported in the future.

Fig. 12. Schematic of the sensitive OPLL with low noise, high gain trans-
impedance amplifier.

VII. CONCLUSION

In this paper, two chip-scale OPLLs were designed and
demonstrated. By designing a novel, low power consumption
InP-based photonic integrated receiver circuit, overall power
consumption of the first generation OPLL was significantly re-
duced. The second generation OPLL consumes only 1.35 Watts
of electrical power, which is the lowest power consumption re-
ported for an OPLL to the best of author’s knowledge. Both
OPLLs have 500 MHz loop bandwidth, with 0.067 rad2 phase
noise variance, integrating from 1 kHz to 10 GHz. Offset lock-
ing ranges are 15.2 GHz and 17.8 GHz respectively. Minimum
input power level required from the reference side for phase
locking was measured to be 20 μW. Novel, application specific
electrical IC was proposed for lowering the sensitivity of such
OPLLs to as low as 25 pW.
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