Indium-Phosphide Photonic-Integrated-Circuits

Larry A. Coldren Fred Kavli Professor of Optoelectronics and Sensors ECE & Materials, UC-Santa Barbara

UCSB

Major contributions by: Meint Smit & Kevin Williams Vikrant Lal & Fred Kish Yuliya Akulova & Mike Larson L. Johansson & M. Mashanovitch Ben Yoo UCSB Collaborators

What's the problem?

Size, Weight, Power, Cost, Performance, Reliability

Where?

- Communication
 - Long haul
 - Metro, campus
 - Data centers, Supercomputers
- Sensing/instrumentation
- Computing

Integration Platforms^{W4G.1.pdf OFC 2017 © OSA 2017}

OFC 2017

UCSB

- > 1970's OEICs on GaAs for high-speed computing
- > 1980's InP photonics/fiber; integration & tunables for coherent \rightarrow <u>Reach</u>
- > 1990's Widely-tunables, laser-mods, small-scale int. for WDM and cost
- > 1990's VCSELs for datacom and optical interconnection
- ➤ 2000 Bubble: Explosion of strange ideas, bandwidth-demand satisfied by DWDM → crash; but bandwidth needed by 2010.
- 2000's InP PICs & PLCs expanded and matured; increasing use of VCSELs in high-speed datacom and computing interconnects
- 2006+ Emergence of Si-PICs with several different goals: low-cost OEICs; high-performance PICs; or stop Moore's-Law saturation
- 2008+ Use of advanced modulation formats/coherent receivers for improved <u>Spectral Efficiency</u>—need for integration at both ends of links
- 2010's Increased InP-PIC use; maturity of Si-photonics solutions; improved VCSEL performance; heterogeneous integration approaches
- 2017 Some delineations; InP-PICs for long-haul/metro; Si-photonics beginning to emerge in high-volume short-data/metro

W4G.1.pdf OFC 2017 © OSA 2017

Motivation

OFC 2017

UCSB

- The Ethernet ecosystem—it's nearly all optical (fiber)
- Need higher bandwidth & performance with lower SWAP-C

Exponential network traffic growth is driven by high-bandwidth digital applications G4, Video-on-demand, HD-TV, wireless backhaul, cloud computing & services

UCSB Scaling spectral efficiency through WDM, Coherent, ?

~10 Terabit/s WDM systems are now commercially available ~100+ Terabit/s WDM systems have been demonstrated in research (Coherent) EDFA enabled WDM (wavelength division multiplexing)in 1990s Growth of WDM system capacities has noticeably slowed down Now "Space-Division-Multiplexing" (SDM) is being explored

Courtesy P. Winzer

OFC 2017

- Reduced size, weight, power (SWAP)
- Improved <u>performance</u> (coupling losses, stability, etc.)
- Improved <u>reliability</u> (fewer pigtails, TECs, fiber alignment optics, etc...), although chip yield may not be highest
- Cost (in volume)

Horizontal and vertical integration possible - <u>multiple functionality</u> and <u>arrays</u> of chips in one

W4G.1.pdf OFC 2017 © OSA 2017 Photonic integrated circuit (PIC) pros/cons

OFC 2017

Small footprint

UCSB

- No lenses between elements
- Strongly confining waveguides

- Low power
 - Avoid 50-ohm lines (if close to electronics); only one cooler/PIC
- Performance
 - Cannot optimize components separately \rightarrow need common design rules
 - Only one input/output coupling, but still need mode X-former or optics
 - Can usually avoid isolators on-chip, but still need at output
 - Phase delays for interference and feedback stable and small
- Low price (need large market to realize)
 - Fewer touch points
 - No mechanical adjustments—packaging still issue
 - Less test equipment
 - Less material

InP vs Si vs PLC

	Performance		
Building block	InP	Si	TriPleX
Passive components	•	••	
Lasers		0	0
Modulators			•
Switches ••			•
Optical amplifiers	••• 0		0
Detectors			0

Performance		
	Very good	
•	Good	
•	Modest	
0	Challenging	

Footprint	•	•••	
Chip cost	٠	••	•
CMOS compatibility	0	••	•
Low cost packaging	0	$0^1/00^2$	••

¹ Endfire coupling (low refl.)

² Vertical coupling (med. refl.)

A PIC enabled revolution in Photonics

Global Market

A global photonics market development powered by integration

Transceiver market history and projection

Transceiver Market

Source LightCounting

OFC 2017

Cost reductions through volumes

- The existing (large) fabs and processes for Silicon may be a disadvantage
- Need a mechanism to allow new applications to grow
- Organically scale or a step change ?

Moving to Interconnects

OFC 2017

Drive optical to high volumes and low costs

Moore's Law for Photonics

Scaling in Photonic ICs

Photonics Research 3, 5, pp. B60-B68 (2015)

https://www.osapublishing.org/prj/abstract.cfm?uri=prj-3-5-b60

W4G.1.pdf OFC 2017 © OSA 2017

Indium Phosphide as the Materials Platform

Indium Phosphide

Zincblende structure

(two intersecting FCC lattices, one for In and one for P)

Lattice constant = 5.87 A at 300K

InGaAsP/InP lattice-matched alloys

OFC 2017

MMI coupler

Integration Technology: Active-Passive (axial) Integration

OFC 2017

UCSB

3 Bandgaps usually desired

Integration Technology.^{W4G.1.pdf OFC 2017 © OSA 2017} Offset Quantum Well Process

OFC 2017

InP integration platforms

Integration	Technology	Design constraints	Other advantages/issues
Dual waveguides (offset quantum wells)	Bulk or MQW	Gain/mode overlap Carrier injection into the laser	Coupling loss
QW intermixing	λ_1 λ_2 λ_3	Number of QWs and doping is shared between all functional sections	 QW width is not optimum for laser and/or modulator; detuning control is difficult; shape of the QWs is affected by intermixing => modulator efficiency degradation
Selective Area Growth (SAG)	λ_1 λ_2 λ_3	Number of QWs and doping is shared between all functional sections	 QW width is not optimum for the laser/or modulator; transition regions; detuning control is difficult
Regrowth		None	Regrowth can be combined with SAG to tailor waveguide thickness further (ex. spot size converter)

Regrowth integration is robust integration platform with ultimate design flexibility:

✓ Optimization of material composition, number and width of the quantum wells, and doping

Early Active PICs—InP

OFC 2017

Partially transmissive mirrors (couplers) and active-passive integration needed

- → <u>DBR gratings</u> and vertical couplers
- Tunable single frequency

UCSB

- Combined integration technologies
- Y. Tohmori, Y. Suematsu, Y. Tushima, and S. Arai, "Wavelength tuning of GaInAsP/InP integrated laser with butt-jointed built-in DBR," *Electron. Lett.*, 19 (17) 656-7 (1983).

→EML = electroabsorption-modulated laser

Still in production today

M. Suzuki, et al., J. Lightwave Technol., LT-5, pp. 1277-1285, 1987.

Coherent Communication Motivated Photonic Integration

OFC 2017

• In the 1980's coherent communication was widely investigated to increase <u>receiver sensitivity</u> and repeater spacing. It was also seen as a means of expanding WDM approaches because optical filters would not be so critical.

Y. Yamamoto and T. Kimura, "Coherent optical fiber transmission systems," *IEEE J. Quantum Electron*, vol. 17, no. 6, pp. 919-925, Jun. 1981.

• This early coherent work drove early photonic integration efforts—<u>Stability</u>; enabled phase-locking

T. L. Koch, U. Koren, R. P. Gnall, F. S. Choa, F. Hernandez-Gil, C. A. Burrus, M. G. Young, M. Oron, and B. I. Miller, "GalnAs/GalnAsP multiplequantum-well integrated heterodyne receiver," *Electron*. *Lett.*, vol. 25, no. 24, pp. 1621-1623, Nov. 1989

Integrated Coherent Receiver (Koch, et al)

- The EDFA enabled simple WDM repeaters
- (just amplifiers) and coherent was put on the shelf
- But, some aspects of Photonic Integration continued \rightarrow e.g., Tunable Lasers

Tunable Lasers

OFC 2017

VA49Ve15690gt1560

Wavelength (nm)

1530

1570

Tunable DBR Lasers → SGDBR

• $\Delta \lambda / \lambda = N \times \Delta n / n$ by differential mirror tuning

UCSB

Tunable Lasers:W4G.1.pdf OFC 2017 © OSA 2017Sampled-Grating DBR:Monolithic and Integrable

OFC 2017

200 Ju

J. S. Barton, et al,," *ISLC*, TuB3, Garmish, (Sept, 2002)

PAD #2

2008

JDSU

Integration Example: W4G.1.pdf OFC 2017 © OSA 2017 8 x 8 MOTOR Chip: (40 Gb/s per channel) OFC 2017

- SOA Mach-Zehnder Wavelength Converters
- <u>Quantum-well intermixing (QWI)</u> to shift bandedge for low absorption in passive regions
- Three different lateral waveguide structures for different curve/loss requirements
- Single 'blanket' regrowth

Monolithic Tunable Optical Router

See S. Nicholes, et al, "Novel application of quantum-well intermixing implant buffer layer to enable high-density photonic integrated circuits in InP," *IPRM '09*, paper WB1.2, Newport Beach (May, 2009)

W4G.1.pdf OFC 2017 © OSA 2017

Commercial PIC Examples

into XFP transceivers, etc.

Tunables & Selectable Arrays:

EML's:

1520 1530 1540 1550

courtesy of T. Koch

InP PICs for datacenter transceivers

- InP PIC technology enabled 100Gb/s QSFP28 CWDM4 and LR4 transceivers
- Lossless integration of lasers with high efficiency modulators delivers high OMA and ER with low modulation voltage and low power dissipation
- > => continues to be technology choice for 28 and 53Gbaud PAM4 400 Gb/s transceivers

LUMENTUM

2004: First Commercial Large-Scale InP-Based PICs 100 Gb/s (10 x 10Gb/s) Transmitter and Receiver PIC

100Gb/s InP PIC-Based Systems Lead Market

vinfinera
Data Capacity Scaling in The Network

Advanced Modulation Formats & Coherent Detection to increase Spectral Efficiency

OFC 2017

2011: 500 Gb/s PM-QPSK Coherent PICs

Tx PIC Architecture (5 x 114 Gb/s)

- > 450 Integrated Functions
- 8 Different Integrated Functions

Rx PIC Architecture (5x 114Gb/s)

- > 150 Integrated Functions
- 7 Different Integrated Functions

vinfinera

500 Gb/s PM-QPSK Coherent PICs

500 Gb/s Tx→Rx Contiguous Super-Channel

500Gb/s PIC-based Transport / Switching System

#1 in 100G Long-haul

Infinera has 28% of all 100G LH wavelengths sold since Q1-2010, excluding china

2016: 1.2Tbps Extended C-Band tunable coherent 32GBaud/16-QAM coherent Transceiver

- 1.2 Tbps, 6-Channel transmitter and receiver PICs in single Module
- Independent extended C-Band tunable channels
- 200Gbps per channel (33GBaud/16QAM) capable to 1500km Reach.
- 44GBaud data rate demonstrated

B2B Constellations

C-band Tunable Integrated Coherent Transmitter^{W4}PfC^{FC 2017 © OSA 2017}

- Narrow Linewidth Sampled-Grating DBR laser
- Two quadrature Mach-Zehnder modulators
- High power LO output
- 3 SOAs
 - Independent power control for LO and each Tx polarization
 - VOAs
- InP PIC technology is employed for 32 Gbaud 100 and 200 Gb/s coherent pluggable modules

W4G.1.pdf OFC 2017 © OSA 2017

Narrow linewidth thermally-tuned SGDBR Laser 2017

70kHz linewidth and 50dB SMSR at +17dBm Instantaneous Linewidth 0.08 fiber power over 41nm range in C-band +17.5 dBm Instantaneous Linewidth (MHz) 0.07 Top View +16.5 dBm 0.06 0.05 Filter Gai Phase Back SOA Front 0.04 Light Mirror Mirror output 0.03 0.02 Sampled InĠaAsP Thefmal 0.01 isolation MQW grating AR 0 Side View 191000 192000 193000 194000 195000 196000 **Optical Frequency (GHz) Output Power and SOA Current** Side Mode Suppression Ratio 250 **Y** 19 58 Side Mode Suppression Ratio (dB) +17.5 dBm 57 18.5 200 +16.5 dBm 56 150 **CON** 100 **S** 18 55 **Fiber Power (dBm)** 1, 1, 54 53 50 52 0 +17.5 dBm target 51 0.1 nm RBW +16.5 dBm target 50 191000 192000 193000 194000 195000 196000 191000 192000 193000 194000 195000 196000 **Optical Frequency (GHz) Optical Frequency (GHz)**

LUMENTUM

Tunable Interferometric Transmitter

- Compact cavity (broadband HR back mirror used)
- Dual output laser natural fit for interferometric modulation
- Lumped or traveling wave modulators
- Optional) SOAs for power balancing

11/3/2016 – Paper THM2.1 – MWP 2016

^{os}[∧]^{R01}^E E D O M

1550 nm Widely Tunable Interferometric Transmitter

- 50 dB SMSR
- 50 nm tuning range
- 12.5 Gbps operation
 - 25 Gbps in development
- Chirp control
- 80+ km reach in SMF-28 fiber

0.5 1.5 2 2.5 3 3.5 4.5 1 4 Front Mirror (\sqrt{mA})

W4G.1.pdf OFC 2017 © OSA 2017 E E D O M

Quad Transmitter- Butt Joint Platform

- Monolithic InP QUAD C-Band tunable Tx PIC with single output waveguide
- PIC operates at 55°C for reduced power consumption of TEC
- Individual SOAs amplify output power and enable VOA and blanking
- 12.5Gbps Electro-absorption modulators

Wafer-Level Electrical and Optical Measurements

CoC CW and RF Testing

11/3/2016 – Paper THM2.1 – MWP 2016

Quad Transmitter- RF Performance W4G.1.pdf OFC 2017 @ DE REEEDOM

11/3/2016 – Paper THM2.1 – MWP 2016

W4G.1.pdf OFC 2017 © OSA 2017

Research Examples

UCSB

*E J. Norberg, R S. Guzzon, J S. Parker, L A. Johansson and L A. Coldren, "Programmable Photonic Microwave Filters Monolithically Integrated in InP/InGaAsP", J. Lightwave Technol, vol. 29, no. 11, 2011

Erik Norberg

Integration Platform – Saturation and Loss

- Passive loss reduces with increased CT-Layer thickness
 - 0.35 dB/mm passive waveguide loss using deeply etched waveguides (of which scattering loss 0.12 dB/mm)
- Saturation power of **19 dBm** (78 dB/cm gain)

□ Highest P_s reported for ridge width ≤3 µm

Erik Norberg

Integration Platform – RF-linearity results

UCSB

** Robert S. Guzzon, Erik J. Norberg, and Larry A. Coldren, "Spurious-Free Dynamic Range in Photonic Integrated Circuit Filters with Semiconductor Optical Amplifiers", JQE, 48 (2) p269-278 (2012)

Erik Norberg

A Photonic Temporal Integrator With an Ultra-Long Integration Time Window Based on an InP-InGaAsP Integrated Ring Resonator

OFC 2017

Weilin Liu, Student Member, IEEE, Ming Li, Member, IEEE, Robert S. Guzzon, Erik J. Norberg, John S. Parker, Larry A. Coldren, Life Fellow, IEEE, Fellow, OSA, and Jianping Yao, Fellow, IEEE, Fellow, OSA

Fig. 2. The schematic of the proposed on-chip photonic temporal integrator based on a microring resonator.

Fig. 7. The experimental results. (a) The input Gaussian pulse with a temporal width of 54 ps. (b) The integral of the Gaussian pulse with an integration time window of 6331 ps.

Fig. 8. The experimental results. (a) The input in-phase doublet pulse, (b) the integral of the in-phase doublet pulse, and (c) the integral of the out-of-phase doublet pulse.

W4G.1.pdf OFC 2017 © OSA 2017 1 THz, 100×10 GHz monolithically integrated InP OAWG with Built-in Adaptive RF-Photonic Passband Engineering InP Array Waveguide MZMs Circui 35 mm Array Waveex guides Michelson Interferometers QW Region -> **Free Propagation** Region 17 mm Input/Output **MMI** Couplers 1310 nm Control 🖌 Inputs F. M. Soares et al., IEEE PJ, **3**, p 975 (2011) T 1550 nm 1550 nm -Input/Output 30 mm **HR** Coating **NEXT GENERATION NETWORKING SYSTEMS**

2D & 3

LABORATORY

2D & 3D Photonic Integration

100ch x 10 GHz AWG Output Spectrum After Phase-Error Correction

64 channel O-CDMA encoder/decoder

2D-Beam Sweeping

• Lateral beam-steering via phase-shifter array, ψ

Our approach: 1D array + grating

UCSB

• Longitudinal beam-steering via wavelength-tuned grating diffraction, θ

-5-

DARPA-SWEEPER

OFC 2017

W4G.1.pdf OFC

32 x N: Surface-emitting grating phased-array Optical Beam SWEEPER—PIC

OFC 2017

2D Beam Sweeping results (32, x, N) OF DE 201) O DE 2017

UCSB

OFC 2017

UCSB

InP Widely-tunable Coherent Receiver PIC (Phase-locked or Intradyne—also for Optical Synthesis)

W4G.1.pdf OFC 2017 © OSA 2077 2017

Mingzhi Lu, et. al., Optics Express, Vol. 20, Issue 9, pp. 9736-9741 (2012)

Intradyne or Phase-locked Receivers for generic sensor,

UCSB instrumentation, or short-reach communication application?

OFC 2017

DSP

Use Phase-locked detection instead of power-hungry and costly Intradyne/ADC-DSP? *

- Integrated Costa's loop receivers with widely-tunable LOs have been explored
- High-speed A/Ds & DSPs require lots of power and are expensive to design, especially as data rate increases
- Short feedback loops narrow LO linewidth and enable rapid and robust phase locking.
- Some impairments can be removed with much slower, lower-power, lower-cost signal-processing.

Phase Locked Coherent BPSK Receiver "Analog Coherent" W4G.1.pdf OFC 2017 © OSA 201 OFC 2017

OPLL + Costas Loop \rightarrow 1 cm² footprint

Photonic IC: SGDBR laser, optical hybrid, and un-balanced PDs

Electronic IC: limiting amplifiers and phase & frequency detector (PFD)

Hybrid loop filter: Feed-forward technique, op-amplifier and 0603 SMDs

Mingzhi Lu, et. al., Optics Express, Vol. 20, Issue 9, pp. 9736-9741 (2012)

BPSK Data Reception—BERs "Analog Coherent" w4G.1.pdf OFC 2017 © OSA 2017 OFC 2017

BER vs. OSNR (20Gb/s to 40Gb/s)

<u>Error-free up to 35Gb/s , < 1.0E-7 @ 40Gb/s</u>

- <u>120ps</u> loop propagation delay
- <u>100kHz</u> SGDBR-linewidth (as ref. laser)
- _100dBc/Hz@above 50kHz phase noise
- 600ns frequency pull-in time
- <10ns phase lock time

Mingzhi Lu, et. al., Optics Express, Vol. 20, Issue 9, pp. 9736-9741 (2012)

^{• &}lt;u>1.1GHz</u> closed loop bandwidth

Reduced-Linewidth Rapidly-Tunable Laser

Optical Frequency Locked Loop

W4G.1.pdf OFC 2017 © OSA OFC 2017

Electronic-Photonic Integration

W4G.1.pdf OFC 2017 © OSA 2017

• Single-chip vs 2.5 or 3-D integration?

Horizon 2020 2016-2018 wipe.jeppix.eu

Connecting high performance foundry Silicon Electronics to high performance foundry InP photonic ICs Minimizing interconnects for speed and energy efficiency Simplifying assembly

Hybrid integration technology

W4G.1.pdf OFC 2017 © OSA 2017

W4G.1.pdf OFC 2017 © OSA 2017

Hybrid integration scaling

Hybrid approach parasitics become smaller than device junction as pad shrinks

Hybrid can outperform (monolithic)

in speed, power, density, and TTM

Optimization enables/requires electronics-photonics co-design

3D (or Heterogeneous) integration \rightarrow Integration

ORACLE

3D Hybrid Integration (Klamkin group)

- InP laser or PIC with integrated total internal reflection (TIR) turning mirror coupled to Si with grating coupler
- Chips attached with standard IC bonding
- Could be carried out at wafer level in backend step
- P-side down bond to Si substrate for heat removal

B. Song, et al., ECOC 2015 *B.* Song, et al., Optics Express 2016

W4G.1.pdf OFC 2017 OOSA

3D Hybrid Integration for Silicon Photonics

Thermal Impedance Demonstration

Laser bonded to substrate Laser bonded to oxide **Turning mirror** Light path Turning mirror Light path InP substrate InP substrate InP gain InP gain Grating coupler Grating coupler medium medium waveguide waveguide Metal bond Silicon substrate Silicon substrate Silicon Silicon waveguide wavequide 1550 1551.9 1556 1551.8 (um) 1551.8 1551.7 1551.6 mu 1551.7 1551.6 FP mode wavelength (nm) 1248 1244 1244 apout 1550 90 E 1551.5 mode 1551.5 ٩. £ e. 1548 1551 1551.4 1542 15 20 25 30 35 0.15 0.2 0.25 0.3 0.15 0.2 0.25 0.3 0.35 20 35 15 25 30 Stage temperature (deg.C) Applied electrical power to the laser (W) Applied electrical power to the laser (W) Stage temperature (deg.C)

Thermal impedance = 18.63 °C/W

Thermal impedance = 6.19 °C/W

Factor of 3 improvement in thermal impedance

Thermal impedance extraction as in: M. N. Sysak, et al., JSTQE, 2011

W4G.1.pdf OFC 2017 © OSA 2017

Foundry/Fabrication Services

Example InP-PIC Foundry/Fabrication Orgs.

W4G.1.pdf OFC 2017 © OSA 2017 OFC 2017

Foundries/PDK

- JePPIX* (broker: <u>www.jeppix.eu</u>)
 - HHI
 - Smart Photonics
- AIM Photonics (via Infinera—available 2018—RF only)

Custom Foundries/no PDK

- Canadian Photonics Fabrication Centre
- Global Communications Semiconductors

Design/Fabrication Services

- Freedom Photonics (design/fab/test)
- Bright Photonics (design only)
- UCSB (research fabrication facility only)

*For more information, see:

http://iopscience.iop.org/article/10.1088/0268-1242/29/8/083001

Generic Integration

Scanning Electron Microscope Images

Phase Modulator

Deep etched waveguide

Amplifier

Shallow etched waveguide

Tunable DBR grating

Polarization converter

Creating interferometers

W4G.1.pdf OFC 2017 © OSA 2017

Lasers cavities

Fabry-Perot lasers

tunable DBR lasers

multiwavelength lasers

picosecond pulse laser

ring lasers

> 25 mW output power
< 100 kHz line width</p>
< 1 ps pulse width</p>

. . .

TU/e Technische Universiteit Eindhoven University of Technology

Modulators and ROADMs

W4G.1.pdf OFC 2017 © OSA 2017

Application Specific Photonic ICs—JePPIX

W4G.1.pdf OFC 2017 © OSA 2017

Optical switching

4x4 space and wavelength selective switch

Fast optical switch matrix

Fiber to the home

WDM receiver

Fiber sensor readout

Brillouin strain sensor readout

Fiber Bragg Grating readout

Fiber Bragg Grating readout

THz Optical to RF converter

Variety of lasers

Variable repetition rate pulse laser

Filtered-feedback multi-wavelength laser

tunable laser with integrated MZI modulator

QPSK receiver

Optical data handling

All-optical regenerator for constant envelope WDM signals

WDM to TDM Trans-Multiplexer

Medical and bio-imaging

Pulse shaper for bio-imaging

Integrated tunable laser for optical coherence tomography

WDM transmitter

Take-Aways

- PICs are desirable for modest to high volume communication, sensing and instrumentation functions, where size, weight, power and cost (SWAP-C) reductions are desired.
- PICs are important because of the inherently stable phase relationships and possibly seamless interfaces between elements.
- PICs generally bring better reliability once properly designed; yield and some aspects of performance may be compromised.
- InP-PICs currently lead the market for Long-Haul and Metro communications; 'heterogeneous integration,' & Si-photonics expanding in datacom and metro.
- For Electronic-Photonic integration, single-crystal (e.g. CMOS) integration may not be as desirable as heterogeneous (3D, 2.5D) integration (unless very high volume).