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Abstract—An indium phosphide (InP)-based photonic inte-
grated circuit (PIC) transmitter for free space optical communi-
cations was demonstrated. The transmitter consists of a sampled
grating distributed Bragg reflector (SGDBR) laser, a high-speed
semiconductor optical amplifier (SOA), a Mach-Zehnder modula-
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tor, and a high-power output booster SOA. The SGDBR laser tunes
from 1521 to 1565 nm with >45 dB side mode suppression ratio.
The InP PIC was also incorporated into a free space optical link
to demonstrate the potential for low cost, size, weight, and power.
Error-free operation was achieved at 3 Gb/s for an equivalent link
length of 180 m (up to 300 m with forward error correction).

Index Terms—Free space communication, photonic integrated
circuit, sampled grating DBR laser, semiconductor optical ampli-
fier, Mach-Zehnder modulator, optical interconnect.

1. INTRODUCTION

REE space laser communication is of great interest re-
F cently for providing reliable, high-speed connectivity for
long-haul intersatellite and deep-space links [1]-[4]. In 2013,
NASA demonstrated a two-way laser link between earth and
a satellite in lunar orbits over 239,000 miles at a data rate of
622 Mbps, which is more than six times that of previous state-
of-the-artradio systems flown to the moon. Commercial-oft-the-
shelf (COTS) components provide a ready solution to assemble
free space optical systems. However, deployment of free space
communication on small spacecraft, to enable low-cost and fre-
quent missions that include high data rate downlink capability,
requires photonic components with low cost, size, weight and
power (CSWaP), while demonstrating high output optical power
and power-efficient modulation formats [5]-[10]. Indium phos-
phide (InP) is the most mature and high-performance photonic
integrated circuit (PIC) platform. It allows for the monolithic
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Fig. 1. Microscope image of fabricated InP-based PIC transmitter comprising
of a five-section SGDBR laser (all sections are labeled in the figure), a high-
speed SOA (SOA 1), a 1-mm long MZM, and a high-power two-section output
booster SOA (SOA 2).

integration of all the required active components (e.g., lasers,
semiconductor optical amplifiers (SOAs), modulators / pulse
carvers), and passive components (e.g., waveguide intercon-
nects, filters, couplers), thus enabling complex single-chip im-
plementations of advanced transmitters and receivers [9]-[17].
Additionally, this platform is ideal for the telecommunication C
band, which is the wavelength region of choice for free space op-
tical communication. InP is therefore the platform of choice for
space applications where reliability and technology readiness
are critical.

Some previous works demonstrated that InP-based PICs can
operate above 40 Gbps [18]-[20]. Our work here focuses on a
few Gbps data rates, which is representative of state of the art
for free space laser communication. For free space communica-
tions, it is desirable to achieve high energy efficiency and high
output optical power. In this work, an InP-based PIC transmit-
ter is demonstrated for free space optical links. The transmitter
was tunable from 1521 nm to 1565 nm, covering the entire
C band. The measured off-chip optical power was 14.5 dBm.
The transmitter can be configured for various modulation for-
mats including on-off keying (OOK), pulse position modulation
(PPM), differential phase shift keying (DPSK), and frequency
shift keying (FSK). The InP PIC was implemented in a free
space optical link. Error-free operation was achieved at 3 Gbps
for an equivalent link length of 180 m (up to 300 m with forward
error correction).

II. INTEGRATION PLATFORM AND FABRICATION

The fabricated PIC transmitter is shown in the microscope
image of Fig. 1. It consists of a widely tunable sampled grating
distributed Bragg reflector (SGDBR) laser, a high-speed SOA
(SOA 1), a Mach-Zehnder modulator (MZM), and a high-power
two-section output booster SOA (SOA 2). The second section of
SOA 2 has a flared waveguide for high output saturation power.
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Fig. 2. (a) Epitaxial structure in the active region; (b) Sideview of the
active/passive interface following regrowth.

(2)

— 200 nm

Fig. 3. SEM images at various stages of the fabrication process: (a) The
sampled gratings of the front mirror of the laser; (b) Top view of a 1 x 2 MMI
structure; (c) Cross section of a MMI with silicon nitride passivation; (d) Cross
section of the high-speed SOA.

The waveguide at the output is angled with respect to the chip
facet to reduce the reflectivity of this interface.

The epitaxial material structure was grown by metalorganic
chemical vapor deposition (MOCVD) on an n-type (100) InP
substrate. As shown in Fig. 2(a), the active region (used for
laser and SOAs) consists of an indium gallium arsenide phos-
phide (InGaAsP) multi-quantum-well structure that is situated
above an InGaAsP waveguide core layer [21]. The structure is
designed to achieve a low confinement factor (4.2%) in the quan-
tum well gain region, which is beneficial for providing SOAs
with high saturation power. The active/passive integration tech-
nique utilizes an offset structure with the quantum wells being
selectively removed by wet etching for passive waveguides and
modulators. A sideview of the active/passive interface follow-
ing the regrowth step is illustrated in Fig. 2(b), also showing the
gratings etched into the waveguide core layer.

Fig. 3 shows scanning electron micrograph (SEM) images at
various stages of the fabricated process. After the active/passive
definition, the sampled grating mirrors were patterned by elec-
tron beam lithography and dry etched with chlorine-based ion
beam etching (Fig. 3(a)). This was followed by a ‘blanket’ re-
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Fig. 4. Opverlaid lasing spectra of the SGDBR laser.

growth of the InP cladding and p+ InGaAs contact layer [21],
[22]. The waveguide ridges were then defined by dry etching and
a cleanup wet etch to form smooth vertical sidewalls (Fig. 3(b)
and (c)). Next, Ni/AuGe/Ni/Au n-contacts were deposited on the
n InP substrate and annealed. The p+ InGaAs contact layer was
removed between devices by wet etching to provide some elec-
trical isolation. Photosensitive Benzocyclobutene (BCB) was
used to reduce parasitic pad capacitance for the high-speed SOA
and MZM (Fig. 3(d)). Ti/Pt/Au was deposited for p contacts and
then annealed.

For backend processing, the fabricated samples were thinned
to less than 180-ym thickness and then PICs were cleaved. Fab-
ricated transmitters have a footprint of 5.5 mm x 0.36 mm. PICs
were solder mounted to ceramic carriers and wire-bonded for
characterization. Device submounts were fixed to a temperature-
controlled stage.

III. DEVICE CHARACTERIZATION
A. SGDBR Laser

The widely tunable SGDBR laser, used as the integrated light
source, consists of a rear absorber, back mirror, phase section,
active gain section, and front mirror (see Fig. 1). The SGDBR
laser has a S-period front sampled grating mirror with 4-pm wide
bursts and 68.5-um period, a 12-period back sampled grating
mirror with 6-pm wide bursts and 61.5-pm period [23], [24]. By
controlling the injected current in the front and back mirrors, the
emission wavelength can be tuned from 1521 nm to 1565 nm,
demonstrating a 44-nm tuning range, thus covering more than
the entire C-band. The tuning characteristics of the SGDBR
laser are illustrated in Fig. 4, which presents the overlaid lasing
spectra at various tuning conditions.

The light-current-voltage (LIV) characteristics were mea-
sured by using the reversed-biased high-speed integrated SOA
as aphotodetector. As shown in Fig. 5, the laser exhibits a thresh-
old current of 45 mA and an output optical power of 15 mW at a
gain section current of 100 mA; the peak power is well beyond
15 mW. The laser side mode suppression ratio (SMSR) across
the tuning range is shown in Fig. 6, with a maximum SMSR of
55 dB at a wavelength near 1550 nm (see Fig. 7).
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Fig.5. SGDBR laser LIV curve (with CW current source) measured by using
the SOA as a photodiode.
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Fig. 6. Measured SMSR across the tuning range.

For laser linewidth characterization, the self-delayed het-
erodyne method was utilized and the measurement results are
shown in Fig. 8 demonstrating a 3-dB linewidth of 6.4 MHz.

B. Mach-Zehnder Modulator

During the p-cladding regrowth, the zinc doping diffuses
into the InGaAsP waveguide layer, significantly increasing the
device capacitance. To address this issue, some of the wave-
guide layer adjacent to the fabricated ridge was removed with
a low-power reactive ion etch step following ridge forma-
tion [25]. Then a BCB layer was patterned where metal pads
would be later deposited in order to further reduce parasitic pad
capacitance.

Fig. 9 and 10 report plots of the DC modulation characteristics
(transfer functions) for the MZM under forward bias and reverse
bias, respectively. Under forward bias, the MZM demonstrates
an extinction ratio (ER) of 25 dB and half-wave voltage (V)
lower than 0.25 V at 1554 nm with approximately a 0.7-V
forward voltage bias. Under reverse bias, the ER is 15 dB with
a V, of —5.8 V. As expected, the MZM is significantly more
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Fig. 7. Lasing spectrum near 1550 nm with a 55-dB SMSR measured by an
optical spectrum analyzer with a resolution bandwidth of 0.02 nm.
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Fig. 8. Measured heterodyne laser linewidth spectrum demonstrating a 3-dB
linewidth of 6.4 MHz.
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Fig. 9. MZM response under forward bias at various laser wavelengths.

efficient under forward bias. This is attractive especially for
applications where an MZM is used for energy-efficient PPM
for lower symbol rates. In this case, the MZM and high-speed
SOA (SOA 1) would be simultaneously modulated by using two
phase-aligned waveform generators.
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C. Semiconductor Optical Amplifier

The PIC transmitter comprises of two SOAs: a high-speed
SOA for amplification/modulation and a two-section booster
SOA with curved/angled and flared ridge waveguides. SOA 1
is 3 um wide and 400 pm long. It is placed after the laser and
before the MZM, to compensate for modulator insertion loss,
and could also be used for modulation. The gain characteristics
of the high-speed SOA at different input power levels are shown
in Fig. 11.

For SOA 2, it is constructed with two separate sections that
can be pumped with different injection current levels, a scheme
that may be utilized for optimizing power efficiency. The lengths
of the two sections are 350 and 500 pm, respectively. The second
section linearly flares from 3 pm to 5 pm, which reduces the op-
tical power intensity thus enables an increased saturation power.
This SOA at the transmitter output could potentially enable the
PIC transmitter to be used in near-earth free space optical links
without requiring an EDFA power amplifier.
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Fig. 12.  Off-chip optical power of the PIC transmitter versus the current in
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Fig. 13.

Eye diagrams for 1 Gbps and 3 Gbps NRZ OOK modulation.

IV. FREE SPACE OPTICAL LINK

To evaluate the transmitter performance, first a static char-
acterization was performed. The transmitter optical output was
coupled to an integrating sphere to measure the off-chip power.
Fig. 12 shows the off-chip power versus the current in the flared-
waveguide section of the booster SOA. The current of the laser
gain section, the SOA 1, and the first section of the SOA 2 are
150 mA, 110 mA and 90 mA, respectively. The maximum out-
put power with the above DC biasing is 14.5 dBm (28 mW).
The propagating loss of the curved and flared waveguides at
the output is estimated to be 3 dB. The devices characterized
were not anti-reflection (AR) coated, which would increase the
coupled output power. Also, in future measurements with AR
coated devices and improved heat sinking, it is expected that
higher current levels can be achieved that will lead to higher
measured output optical power.

To measure the high-speed performance of the transmitter,
one arm of the MZM was wire bonded to a 50-(2 RF feeding
transmission line and on the other side to a 50-(2 load mounted to
the ceramic carrier. Fig. 13 shows the eye diagrams for 1 Gbps
and 3 Gbps non-return-to-zero (NRZ) OOK modulation at a
reverse bias of —3.9 V. The extinction ratios (ER) are 13.4 dB
and 16.8 dB, respectively.

Utilizing the fabricated InP PIC transmitter, a free space op-
tical link was constructed as shown in Fig. 14. A NRZ 2'0 —1
pseudo random binary sequence (PRBS) was generated and ap-
plied to the MZM through a bias-Tee. The optical signal emitting



ZHAO et al.: INDIUM PHOSPHIDE PHOTONIC INTEGRATED CIRCUITS FOR FREE SPACE OPTICAL LINKS

BPG
| Bias-T | Mod. bias

DC

i > SMF
12 F|(| Gain

i| = 2

g o

=

i Back Mirror Front Mirror SOA1 MZM

Oscilloscope
Error Analyzer

EDFA VOA Collimator Collimator
Fig. 14.  Schematic of free space optical link setup.
0
* Tx measured »
%) —Tx fit
R o Ref measured y
o —Ref fit
o -4
m
N
éﬁ -6
1 Gbps
-8
* o
-10
20 25 30 35 40
Attenuation (dB)
0
-2
2
o -4
a
g -6
— * Tx measured
Tx fit
-8 © Ref measured
. ° —Ref fit
-10
20 25 30 35 40
Attenuation (dB)
Fig. 15. BER for 1 Gbps and 3 Gbps NRZ OOK transmission.

from the transmitter was collected by a lensed single mode fiber
(SMF) and coupled to an optical collimator (with a beam diver-
gence angle of 0.016°), and then transmitted in air and collected
by an identical collimator. The distance between the two colli-
mators was 1.35 m. At the receiver side, an erbium doped fiber
amplifier (EDFA) partially recovered the link loss and the sig-
nal was then detected by a PIN photodiode. An in-fiber variable
optical attenuator (VOA) was used to simulate the attenuation
of the free space optical link.

Bit error rate (BER) measurement results at 1 Gbps and
3 Gbps are shown in Fig. 15 as a function of the link attenuation.
The free space link operates free of errors (BER < 1 x 1077)
up to approximately 24 dB attenuation (180 m distance) at the
data rate of 3 Gbps. With forward error correction (BER <
2 x 107%), the equivalent link length can be up to 300 m (28 dB
attenuation). At alower date rate of 1 Gbps, the performance can
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be further improved. In this case, the corresponding link lengths
at error free and forward error correction limit are 300 m and
400 m, respectively. A reference transmitter, consisting of a 10
GHz commercial MZM and an external cavity source, was also
tested in the link under the same setting for comparison. The
overall link length could be drastically increased with a booster
high-power EDFA, which is commonly used in free space opti-
cal links.

In future work, other energy-efficient modulation formats,
such as PPM at lower symbol rates, will be demonstrated for
free space optical links. On the other hand, higher data rate up to
40 Gbps can be achieved with more compact modulator designs.
Instead of using offset quantum wells, a quantum well intermix-
ing technique would eliminate the tradeoff between modulation
efficiency and insertion loss. Furthermore, efforts will be made
to improve the output optical power. Structures with ultra-low
optical confinement factor in the active gain region would en-
able lower local optical intensity inside the SOAs, thus allowing
for higher output saturation power.

V. CONCLUSION

An InP-based PIC transmitter was fabricated and character-
ized for free space optical communications. The SGDBR laser
demonstrates a 44-nm tuning range and >45 dB SMSR across
this range. With the high-power output SOA, the measured off-
chip power was 14.5 dBm. The InP PIC transmitter was inserted
in a free space optical link. Error-free operation was achieved at
a data rate up to 3 Gbps with an equivalent link length of 180 m
(up to 300 m with forward error correction).
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