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We have demonstrated the first integrated ring mloded laser (MLL) with a reactive ion etch (RIEg
coupler. The RIE lag directional coupler (RL-DChighly advantageous for integrated MLLs as it Aasnsertion
loss <1 dB and can be designed to provide any cuyplalue. This provides the RL-DC with a much reskd
flexibility in large photonic systems unlike standanultimode interference (MMI) couplers, which igglly provide
only 3 dB power splitting.

InGaAsP/InP MLLs operating at a 1.55 um wavelength very stable pulsed sources, which makes them
attractive components for high-speed optical fic@mmunication with optical-time-division-multiplexg (OTDM)
[1], multi-wavelength sources for wavelength-digisimultiplexing (WDM) [2], and clock distributiorystems [3].
MLLs built on a highly versatile InGaAsP/InP magdrplatform provide the capability to create motiotially
integrated systems-on-chip. Previously, Y. Shi Hamonstrated a single RIE lag directional couplefingd by
electron-beam lithography [4]. To allow ease ofriedtion of the current MLL device in large photonintegrated
circuits (PICs), we have defined the entire stnectusing i-line stepper lithography and a singtahet

A standard offset quantum well (OQW) InGaAsP/Integnated platform was used with 7 QWs positioneavab
a 300 nm tall 1.3Q waveguide with a confinementdaof 7.1%. A wet-etch removes the QWSs for lowslgassive
waveguides followed by a single blanket p-claddiegrowth. Waveguides were defined by stepper lithplgy on a
photoresist/Cr/Si@three-layer mask. The patterned Sitask was used to mask the InGaAsP/InP yHGIAr etch
chemistry with Inductively Coupled Plasma (ICP) &ee lon Etching (RIE). The RIE lag effect, whielets to
slow the etch rate of smaller features, was usettfime a 300 um long 700 nm wide directional ceupih a deeply
etched 4400 pum ring with a single etch-step, asvelino Fig. 1. The directional coupler has an eteptt of ~2.65
um (100 nm from the bottom of the waveguide), witile deeply etched waveguides have an etch de@t6aim
(below the waveguide layer by 850 nm), as showrritn 2. A deeply etched directional coupler regsiien
extremely narrow gap <200 nm to have appreciabiglory. This typically requires more complicatece&lon-
Beam-Lithography (EBL), while the severe RIE lafgef from the narrow feature necessitates long &teés. This
etch is difficult to make vertical and smooth, whigicreases scattering losses. We overcome thesesisdy
adopting the single-etch process, which uses tEel&®) to our advantage and allows more streamlimedessing of
directional couplers without the need for a segamatrface ridge waveguide defined by wet-etching deeply
etched waveguide defined by dry-etching.

As shown in Fig. 3, the measured cross couplindy®RIE lag directional coupler varies from 7-tdd @ver the
telecom C-band. The measured peak power off-chgpp~+290uW (-7 dBm). The RF spectra of the fundanhemis
second harmonic from ESA measurements is showtigirdEThe raised plateau on the RF spectra at 2 Gidue
to distortion from a low noise amplifier in the ES#d appears regardless of signal. The MLL shoablest
operation over a wide range of SA biases -8 to -@nd Semiconductor Optical Amplifier (SOA) driverants of
170-290 mA. The mode-locked regime with RF poweb @B above the noise is shown in Fig. 5. The pulisith
variation measured by an Inrad SHG autocorrelad@) (s shown in Fig. 6. The minimum pulse widtHLid ps with
a spectral width of ~6 nm.
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Fig. 1. Top-down SEM image of a) fabricated ring
mode-locked laser and b) RIE lag directional
coupler.
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Fig. 2. SEM image of RIE lag directional coupler
cross-section. The center etch depth is 200 nm into
the waveguide layer.
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Fig. 3. Measured bar and cross coupling of 300 pm
long RIE lag directional coupler. Insertion loss wa
measured at <1 dB.
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Fig. 4. ESA RF power spectrum at mode-locking
showing first and second harmonic. Due to the low
input power, the input electrical signal passes
through a 30 dB low noise amplifier (LNA). The
pedestal seen at 3 GHz is an artifact due to the
LNA.
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Fig. 5. Measured RF power of the MLL over the
operating regime.
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Fig. 6. Measured pulse width of the MLL over the
operating regime.



