
Figure 1. (a) Test setup used to measure straight PM efficiency. LPF = low pass filter, AOM = acousto-optic modulator, OSA = optical 

spectrum analyzer, EDFA = erbium-doped fiber amplifier, PD = photodiode, TIA = transimpedance amplifier, LIA = lock-in amplifier, 

ESA = electrical spectrum analyzer. (b) Cross-section of PM. (c) Waveguide loss as a function of reverse bias. (d) Straight PM efficiency. 
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1. Introduction

Low residual amplitude modulation (RAM) phase modulators (PMs) are important for a host of applications,

including precision spectroscopy, LIDAR, and quantum communications [1,2]. These applications would also

benefit from reduced instrument size, weight, power consumption, and cost. Indium phosphide (InP)-based photonic

integrated circuits (PICs) combine lasers, modulators, photodetectors, and passive components such as directional

couplers on a single chip, greatly reducing footprint and improving reliability [3,4]. Typical InP PMs, however,

suffer from bias-dependent high RAM, thereby motivating novel phase modulator implementations and/or RAM

reduction for InP PICs [5].

In this work, we present an adaptation of the shift-and-dump phase shifter (SDPS) that was first demonstrated in 

silicon [6,7] to InP phase modulators for RAM reduction. The SDPS is a Mach-Zehnder interferometer-based device 

with directional couplers at the input and output (see top of Fig. 2(a)). By choosing the correct PM length and 

directional coupler splitting ratios, the device yields an almost constant total loss despite varying loss in the 

modulated arm as the phase changes. The ideal condition for the SDPS, as given in [6] is: 

With the device configuration shown at the top of Fig. 2(a), eqn. 1 becomes: 
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Figure 2. (a) Top: SDPS structure adapted from [6] Bottom: fabricated SDPS. (b) Measured change in transmission with reverse bias for SDPS 

(black) and expected change in transmission for the SDPS (orange) and straight PM of equivalent length (blue).  
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where φ1 and 𝛼1 are the maximum phase shift and corresponding loss on the modulated arm and φ2 is a constant bias 

applied to the top arm with accompanying loss 𝛼2. 

2. Straight Phase Modulator Characterization 

To determine optimal values for the directional coupler splitting ratios, 𝜅1 and 𝜅2, and the SDPS arm length, L, the 

waveguide PM loss as a function of reverse bias and modulation efficiency must be determined. A cross-section of 

the PM waveguide is shown in Fig. 1(b). Phase change is accomplished by the Franz-Keldysh effect in the bulk 

indium gallium arsenide phosphide (InGaAsP) waveguide layer. To measure the loss as a function of reverse bias, a 

test structure with an integrated laser followed by a 2.5-mm long PM was used. With the laser on, the photocurrent 

at the PM was recorded for increasing reverse bias and converted to the loss values shown in Fig. 1(c). The method 

described in [8] was used to measure the modulation efficiency and the test setup is shown in Fig. 1(a). Figure 1(d) 

plots the linear component of the Fourier spectrum of the phase modulation and yields a modulation efficiency of 

approximately 30°/(V·mm). The PM was modulated at 500 kHz around a bias point of ˗1.5 V.  

3. SDPS Design, Fabrication, and Characterization 

An optical micrograph of the fabricated SDPS is shown at the bottom of Fig. 2(a). Based on the results from 

characterizing the straight PM it was determined that 𝜅1 = 𝜅2 = 0.15 for an arm length of 816 μm. The splitting ratio 

of the fabricated directional couplers was measured to be 𝜅 = 0.12. The black line in Fig. 2(b) shows the measured 

change in transmission through the SDPS as a function of reverse bias up to V𝜋. The total change in transmission 

level over 𝜋 phase shift is 1.98 dB, whereas the expected change in transmission for the equivalent length straight 

PM, shown in blue, is 3.85 dB, representing almost a 50% decrease. The orange line is the calculated transmission 

for an SDPS with 𝜅1 = 𝜅2 = 0.12 and shows a transmission change of 1.41 dB, demonstrating that our device came 

close to the achievable transmission flattening.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

The device presented in this work reduces RAM in InP PMs by compensating for loss due to electro-absorption. The 

change in transmission for 𝜋 phase shift was reduced from 3.85 dB to 1.98 dB for an 816-μm long PM. This 

implementation represents progress towards integrated laser stabilization for compact remote LIDAR sensors for 

small form factor satellites.   
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