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Abstract: The wavelength tuning range of a tunable vertical-cavity surface-emitting laser 
(VCSEL) is strongly influenced by the design of the interface between the semiconductor 
cavity and the air cavity. A simplified model is used to investigate the origin of the dramatic 
differences in free spectral range (FSR) and tuning slope observed in semiconductor cavity 
dominant, extended cavity, and air cavity dominant VCSELs. The differences arise from the 
positioning of the resonant and antiresonant wavelengths of the semiconductor cavity with 
respect to the center wavelength. The air cavity dominant design is realized by designing an 
antiresonant semiconductor cavity, resulting in a larger tuning slope near the center of the 
tuning range and a wider FSR toward the edges of the tuning range. The findings from the 
simplified model are confirmed with the simulation of a full VCSEL structure. Using an air 
cavity dominant design, an electrically pumped laser with a tuning range of 68.38 nm 
centered at 1056.7 nm at a 550 kHz sweep rate is demonstrated with continuous wave 
emission at room temperature. This epitaxial design rule can be used to increase the tuning 
range of tunable VCSELs, making them more applicable in swept-source optical coherence 
tomography and frequency-modulated continuous-wave LIDAR systems. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Wavelength-swept lasers are important components in modern optical communications, light 
detection and ranging (LIDAR), optical coherence tomography (OCT), and high-resolution 
laser spectroscopy. The most important performance criteria are wavelength tuning ratio 
(Δλ/λC) and sweep speed. Vertical-cavity surface-emitting lasers (VCSELs) with tuning 
capability [1] have exhibited many desirable attributes including wafer-scale fabrication and 
testing, continuous and wide tuning, small footprint, and low power consumption. With a 
very short cavity (2-10 μm), the VCSEL’s wavelength can be tuned by varying the optical 
thickness of some of the DBR layers or the optical cavity. This may be accomplished by 
varying the refractive index of some of the layers [2–4] or their physical thicknesses. The 
former approach has yet to experimentally result in a wide sweep range. Alternatively, using a 
microelectromechanical system (MEMS) to physically change the optical cavity length, a 
wide, continuous tuning range has been demonstrated [5]. Since the first MEMS-tunable 
VCSEL reported in 1995, many advances have been reported for center wavelengths (λC) of 
850 nm, 980 nm, 1060 nm, 1310 nm, and 1550 nm [6–13]. Conventional MEMS-tunable 
VCSELs are designed with a high optical intensity concentrated in the semiconductor portion 
[5–7]. This configuration is referred to as semiconductor cavity dominant (SCD) design. The 
tuning ratio of a SCD design is limited to ~3.5% by the relatively small free spectral range 
(FSR). 

To increase the tuning range, researchers have designed VCSELs with a λC/4-thick anti-

reflection (AR) layer with AR Sn n=  where nS is the index of the topmost semiconductor 
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layer. This configuration was referred to as the extended cavity (EC) design in [8]. In this 
case, the semiconductor and air cavities are perfectly matched. They resonate as one cavity, 
as if the semiconductor cavity “extends” into the air region. Previously, a very large static 
tuning range of 102 nm centered at 1550 nm (Δλ/λC = 6.6%) was reported for an electrically-
pumped EC VCSEL using electro-thermal tuning [9]. Limited by the thermal time constant, 
the tuning speed is shown to be relatively slow at 215 Hz with a smaller dynamic sweep range 
of 87 nm (Δλ/λC = 5.6%). The EC design has also been implemented at a center wavelength of 
1050 nm with a swept tuning range of 63.8 nm (Δλ/λC = 6.1%) and a faster sweep rate of 240 
kHz [10]. Both devices utilize dielectric distributed Bragg reflectors (DBR) with a high index 
contrast to minimize the effective length of the cavity, increasing the FSR at the cost of 
increased fabrication complexity due to additional deposition steps or multiple oxidation 
layers. 

Recently, a third configuration called the air cavity dominant (ACD) design was reported, 
which forces the optical field to be confined more significantly in the air cavity at the center 
wavelength [11]. This design led to a record tuning ratio of 6.9% for an electrically-pumped 
VCSEL, while allowing more flexible choices of materials and thicknesses in the 
semiconductor-air coupling (SAC) region and the bottom DBR. 

In this study, we reveal the origin of the increased tuning range of the ACD design and the 
impact of the design on threshold material gain. The swept operation of the device is 
demonstrated, exhibiting a swept tuning ratio of 6.5% at a sweep rate of 550 kHz. The high 
sweep rate is attributed to the lightweight high-contrast grating (HCG) used as the tunable 
mirror [14]. 

2. Underlying physics of tunable VCSELs 

Figure 1 shows the schematic and the scanning electron microscopy (SEM) image of our 
1060-nm ACD HCG tunable VCSEL. The device consists of a semiconductor portion, a top 
HCG mirror, and an air gap in between forming an air cavity. The semiconductor portion 
(starting from the top) includes a semiconductor-air coupling (SAC) region, two pairs of p-
DBRs (Al0.12Ga0.88As high-index layer first, followed by Al0.9Ga0.1As low-index layer, 
Al0.12Ga0.88As high-index layer, and Al0.98Ga0.02As layer for oxidation), a 1λC cavity with five 
quantum wells in the center, followed by 38.5 pairs of n-DBRs, all grown on an n-doped 
GaAs substrate. One can identify two longitudinally coupled cavities: one centered at the 
active cavity with quantum wells and a second centered at the air gap between the HCG and 
the semiconductor. As described in [11], the SAC region dictates the difference between the 
three designs: SCD, EC and ACD.  

 

Fig. 1. (a) Schematic view of a MEMS-HCG tunable VCSEL with engineered semiconductor-
air coupling (SAC) region. (b) Scanning electron microscope view of a fabricated 1060-nm 
MEMS-HCG tunable VCSEL. 

                                                                                               Vol. 27, No. 3 | 4 Feb 2019 | OPTICS EXPRESS 1799 



To explor
stack to a 4λ
variable lengt
to have a sim
reflectors wh
eliminates the
which allows
reflectors. Wh
be sampled b
the tuning cur

Fig. 2
couple
semic
in gre
Comp
respec
wavel
semic
two fa
full st

We consid
representing 
coupled-cavit
finding the w
as a function 
Fabry-Perot (
structure is on
behavior is th

re the underlyi
C semiconduct
th (index 1), sh

milar FSR to a 
hich have Fres
e nonlinearity 
s the resonanc
hen the mirrors
y the bandwid
rve near the ed

2. Simplified coup
ed cavities with 

conductor cavity w
een, and the air cav
parison between S
ctively. The ACD
length of 1060 n
conductor cavity m
amilies of lines cr
tructures. 

der three refra
SCD, EC, an

ty structure for 
wavelengths wit

of air cavity le
(FP) waveleng
ne cavity. How

he same as show

ing physics of
tor cavity with
hown in Fig. 2
realistic desig
nel coefficient
and discontinu

ce lines in Fig
s are replaced 

dth of the DBR
ges of the tunin

pled-cavity transfe
a semiconducto

with index nS is sho
vity has an index 
SCD, EC, and A
D design has th
nm. (c) SCD and
modes in blue and a
ross, which results

active index va
nd ACD cases

the three case
th zero round-t
ength, as show

gth linearly de
wever, the SCD
wn in Fig. 13 o

f the two cavit
h index nS, a λ
2(a).The semico
gn. The structu
ts r1 = r3 = 0
uities in the ph
g. 2 to extend
with practical 

R and the phas
ng range. 

fer-matrix analysis
or-air coupling (S
own in blue, the S
of 1. The reflector

ACD tuning char
e widest FSR w

d (d) ACD tunin
air cavity modes in
s in anti-crossing i

alues for the λ
s, respectively
s are calculate
trip phase for 

wn in Fig. 2(b)
ependent on th

D and ACD hav
of [11] with a fu

ties, we simpl
λC/4 SAC laye
onductor cavit

ure is bounded 
0.999 + 0i for
hase of the HC
d beyond the 
structures, the
e spectra of th

s. (a) Illustration 
SAC) layer in-b
SAC layer with in
rs are indicated by

racteristics with n
when measured a
ng curves plotted 
n red. The circles i
in the (black) reso

λC/4 SAC laye
y. The resonan
d using the tra
each air cavity
, for all three 
he air cavity 
ve distinctly di
full VCSEL de

ified the entir
er, and an air r
ty was chosen 

d on both sides
r all waveleng
CG and DBR r

bandwidth of
e wavelength r
he reflectors w

of simplified two
etween. The 4λC

ndex nSAC is shown
y dashed lines. (b)
nSAC = 1, nAR, nS

around the center
in black against

indicate where the
onance lines of the

er, nSAC = 1, n
nces of the s

ansfer matrix m
y length and ar
cases. The EC
length since t
ifferent curvatu
sign. 

e epitaxy 
region of 
to be 4λC 

s by ideal 
gths. This 
reflectors, 
f the real 
range will 

will distort 

 

o 
C 
n 
) 
S 
r 
t 
e 
e 

AR, or nS, 
simplified 
method by 
re plotted 

C case has 
the entire 
ures. This 

                                                                                               Vol. 27, No. 3 | 4 Feb 2019 | OPTICS EXPRESS 1800 



To understand the curvatures of the SCD and ACD resonance lines, we examine the two 
cavities: the air cavity defined by r1 and r2, and the semiconductor cavity defined by r2 and r3. 
The FP resonances for the semiconductor cavity, computed by removing r1 from the transfer 
matrix simulation described above and plotted in blue in Figs. 2(c) and 2(d), are horizontal 
lines since they do not depend on the air cavity length. The FP resonances for the air cavity 
between r1 and r2, computed by removing r3 from the simulation and plotted in red in Figs. 
2(c) and 2(d), are linearly proportional to the air cavity length. Coupling between the 
semiconductor cavity and air cavity occurs when the two families of lines intersect each 
other, marked with circles on Figs. 2(c) and 2(d). The FP resonances of the full structure 
follows these two families of lines but avoid the crossings as shown by the black curved 
traces. 

Figure 2(c) shows the case where nSAC = 1. The semiconductor cavity is in resonance at λC 
= 1060 nm and thus a blue line is shown at the center wavelength 1060 nm. At an air gap of –
λC/4, r1 directly touches the semiconductor cavity. The full structure resonance lines are 
coincident with the semiconductor cavity resonance lines. As the air gap increases, an 
avoided crossing causes the full structure resonance to follow the air cavity resonance. 
Eventually, the full structure resonance avoids a second crossing to switch back to following 
the semiconductor resonance line. Since there is a semiconductor resonance at λC, the full 
structure resonance shows a low tuning slope at the center wavelength. This is the 
characteristic feature of an SCD design. 

Figure 2(d) shows the case where nSAC = nS. Due to the λC/4 SAC refractive index, the FP 
wavelengths for the semiconductor cavity are shifted from those in the SCD case (Fig. 2(c)). 
In this ACD case, the semiconductor cavity is in antiresonance at λC, with the nearest FP 
modes located instead at 1130.7 and 997.6 nm. Again, the full structure resonance lines begin 
coincident with the semiconductor lines at an air cavity length of 0. The VCSEL resonance 
curves avoid the crossings between semiconductor and air resonances as air cavity length 
increases. Since the semiconductor cavity is in antiresonance at λC, the full structure 
resonance follows the air cavity resonance, resulting in a large tuning slope. This represents 
the ACD case. A stronger coupling between the semiconductor and air cavities in either an 
ACD or SCD design pushes the black lines apart, approaching the tuning characteristic for the 
EC case, in which the cavities are perfectly coupled. 

The mathematical origin of the semiconductor resonances lies in the phase of r2. If nSAC < 
nAR, then the interface between the semiconductor cavity and the SAC layer dominates r2. The 
reflection phase into the semiconductor cavity, ∠r2(λC), is zero, and the semiconductor cavity 
is in resonance at λC. For the special case in which nSAC ≅nAR, the magnitude of r2 is 
insignificant and the VCSEL cavity resonates as a unit. If nSAC > nAR, then the interface 
between the air cavity and the λC/4 SAC layer dominates r2. The reflection phase ∠r2(λC) = π, 
the semiconductor cavity is in antiresonance at λC, and the design is ACD. Note this 
description is very general and applies to more complex designs, such as that depicted in Fig. 
1, which has two pairs of p-DBR between the 1λC cavity and the SAC, and the SAC consists 
of a window (λC/2) layer between the λC/4 nSAC layer and air cavity. 

For a typical tunable MEMS-VCSEL design, the air cavity length is chosen to be large 
enough to allow large tuning range with a maximum MEMS movement approximately 1/3 of 
the air gap. The FSR is thus the limiting factor in tunable VCSEL designs. As noted above, 
FSR is not constant with changing air cavity length. The range-limiting FSR is the shortest 
wavelength difference between the modes directly above and directly below the center 
wavelength, as these are the modes which are able to achieve threshold. In both ACD and 
SCD designs, the highest FSR is located near the intersections of the VCSEL cavity modes 
and the semiconductor cavity modes. Since the semiconductor cavity modes are off-center in 
an ACD VCSEL, the FSR is highest when the VCSEL resonance is far from the center of its 
tuning range. In contrast, the FSR of an SCD VCSEL is decreased as the VCSEL resonance 
moves away from the tuning center. The difference in FSR is illustrated in Fig. 2(b), which 
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5. Experimental results 

The device shown in Fig. 1 is fabricated using process described in [11]. The GaAs sacrificial 
layer is removed by selective wet etching to form the 1.32 µm air gap. The SAC region of the 
actual device uses a design resembling the case shown in Fig. 3(f), with a λC/2 window layer 
composed of an InGaP etch stop and a GaAs contact layer on top of a λC/4 low-index layer. 

Previously, with a combination of thermal, current and electrostatic tuning, single-mode 
continuous lasing across a 73-nm range was demonstrated [11]. With an optimized MEMS 
design, we obtain a continuous sweep by applying a DC tuning voltage of 31.5 V plus an AC 
tuning voltage of 10.0 VPP at the mechanical resonance frequency of 550 kHz, as shown in 
Fig. 6(a). Resonant excitation of the mechanical structure displaces the mirror further than the 
equivalent DC voltage, eliminating the need for a tuning voltage high enough to break down 
the semiconductor junction [16]. The full dynamic tuning range is 68.38 nm, spanning from 
1022.46 nm to 1090.84 nm, which is a direct proof of the extended FSR by our ACD design 
and is close to the calculated tuning range of 76 nm. If the AC voltage is increased to displace 
the MEMS further, the next Fabry-Perot mode will begin to lase over the same range of 
wavelengths. This shows that the tuning range is FSR limited and not threshold limited. 

The threshold current for each wavelength is determined using the swept spectrum. The 
DC tuning bias, AC amplitude, and AC frequency are set such that the movement of the 
mirror traces one period of the tuning curve. A series of DC currents, ranging from 0.1 mA to 
4 mA in steps of 0.05 mA, is applied through the laser diode. For each DC current, the 
emission spectrum is measured. The threshold at each wavelength is then determined by 
numerically differentiating the spectral intensity with respect to laser diode current and 
locating the abrupt step corresponding to the threshold. The results of this measurement are 
shown in Fig. 6(b). For comparison, the threshold current is also measured at a series of DC 
tuning biases. 

The shape of the measured threshold current plotted versus wavelength in Fig. 6(b) 
deviates from the shape of the simulated threshold material gain curve in Fig. 5(c) in several 
aspects. First, the minimum threshold is blue-shifted to 1040 nm due to differences in HCG 
dimensions caused by variation in the lithography and etch processes. The second deviation is 
the peak at 1075 nm found in both the AC and DC measurements. This peak corresponds to a 
transition between two transverse modes. Transverse mode suppression is achieved in non-
tunable oxide VCSELs by placing an oxide aperture near a longitudinal intensity node of the 
desired Fabry-Perot mode. In a tunable VCSEL, the position of the oxide layer with respect to 
the mode changes with wavelength, which can cause different transverse modes to dominate 
at different wavelengths. In the future, different transverse control mechanisms such as 
multiple oxide apertures, ion implantation, or buried heterostructure can be used to eliminate 
higher order transverse modes during tuning. Chirped QWs could also be used to reduce 
wavelength dependence in threshold current. 

6. Conclusion 

In summary, we investigate the mechanism behind the ACD configuration’s large tuning 
range improvement over SCD and EC tunable VCSELs, finding that an antiresonance in the 
semiconductor cavity at the center wavelength is the cause for the high tuning slope and wide 
FSR. Our measurements of ACD devices confirm our theory of tuning ratio enhancement, 
demonstrating electrically pumped VCSELs with a high tuning ratio of 6.5% with resonant 
MEMS tuning at 550 kHz. 
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